To improve the recognition accuracy of off-line handwritten Tibetan characters the local gradient direction histograms based on the wavelet transform are proposed as the recognition features.First for a Tibetan character sample image the first level approximation component of the Haar wavelet transform is calculated.Secondly the approximation component is partitioned into several equal-sized zones. Finally the gradient direction histograms of each zone are calculated and the local direction histograms of the approximation component are considered as the features of the character sample image.The proposed method is tested on the recently developed off-line Tibetan handwritten character sample database.The experimental results demonstrate the effectiveness and efficiency of the proposed feature extraction method.Furthermore compared with the detail components the approximation component contributes more to the recognition accuracy.