This paper examined the bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds in Sudan heavy petroleum fraction. Both broadband and quadrupole isolation modes positive-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with collision induced dissociation (CID) tech- niques were used to characterize a low sulfur crude oil derived vacuum residuum (VR). The appropriate CID operating condi- tion was selected by comparing the molecular weight distributions of the basic nitrogen compounds under various CID operat- ing conditions. Both odd- and even-electron fragment ions were observed from the mass spectrum, indicating that the hetero- lyric and homolytic bond cleavages occurred simultaneously during the CID process. The odd-electron fragment ions were predominant in each class species, indicating preferential heterolytic bond cleavages. At the optimal CID condition, the alkyl groups decomposed deeply and just left the aromatic cores of the nitrogen compounds. No Significant variation in double bond equivalent (DBE) value was observed between the fragment and parent ions, revealing that the domination of single core structure.
ZHANG LinZhouZHANG YaHeZHAO SuoQiXU ChunMingCHUNG Keng H.SHI Quan
The basic-nitrogen aromatic compounds in feedstocks and liquid products from the micro-reactor and soluble components of coke obtained during fluid catalytic cracking (FCC) process were analyzed by the micro-electrospray ioniza- tion (ESI) 9.4T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with an average mass resolving power of 300 000 at a mass range of 100--1 200. The analytical results revealed that the coker gas oil (CGO) contained a higher abundance of basic-nitrogen aromatic compounds with the type of-SN to -9N compared with those in deasphalted oil (DAO) and mixed FCC feedstock. After catalytic cracking, the abundance of lowly condensed basic-nitrogen aromatic compounds was much less than those of highly condensed aromatics in the liquid products, with the carbon number mainly ranging from 6 to 25 and the average carbon number of the side-chains equating to 1--5. On the contrary, with respect to the soluble components of coke, the abundance of lowly condensed basic-nitrogen aromatic compounds was more than those of highly condensed aromatics, and the carbon number ranged from 12 to 30, which was much smaller than that of the mixed FCC feedstock but slightly larger than that of the cracked liquid products. These results have provided some fundamental information on FCC process.
Liu YingrongWang WeiHu QiulingZhu YuxiaDeng JinghuiTian Songbai
High resolution mass spectrometry in combination with distillation and SARA fractionation provides us an opportunity for in-depth understanding about the hydrotreating process at the molecular level. In this study, the atmospheric residue derived from Arabian heavy crude and its hydrotreated products were initially subjected to distillation and SARA fractionation. The saturates were characterized by GC FI/FD TOF MS. The aromatics and resins were characterized by APPI FT-ICR MS. Compositional changes of different compounds (paraffins, naphthenes, aromatic hydrocarbons, and heteroatomic compounds) contained in different distillates (vacuum gas oil, vacuum residue) were obtained. More detailed knowledge about the hydrotreating process was achieved.
The Liaohe crude oil with high total acid number (TAN) was subjected to thermal reaction at 300 ℃ to 500℃. Reaction products were collected and analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to determine acid compounds in the crude oil. The double-bond equivalence (DBE) versus carbon number was used to characterize the oxygenated components in the feed and reaction products. The 02 class which mainly corresponds to naphthenic acids decarboxylated at 350-400℃, resulting in a sharply decrease in TAN. Phenols (O1 class) are more thermally stable than carboxylic acids. Carboxylic acids were also thermally cracked into smaller molecular size acids, evidenced by the presence of acetic acid, propanoic acid, and butyric acid in the liquid product. These small acid species are strong acids likely responsible for corrosion problems in refineries.
YANG BaiBingXU ChunMingZHAO SuoQiHSU Chang SamuelCHUNG Keng H.SHI Quan