Through mechanical analysis, an improved hydraulic model for annular cuttings transport with foam was established for horizontal drilling. Based on the two critical inclination angles, the entire well was divided into three segments. The Bagnold stress, generalized power law rheological model and modified hindered particle settling velocity in foam fluid were adopted in the model to improve the simulation accuracy. The proposed model allows more precise prediction of cuttings transport property in the whole range of well inclination angle. Model performance was examined via case study and experimental data. Simulation results given by the propulsion iteration and trial-and-error method agree well with in-situ horizontal well drilling practice for the case study, and the comparison between the model prediction and Capo’s experimental data shows satisfactory agreement.
With considering the interlayer mass transfer and fluid influx from the reservoir, a one-dimensional two-layer hydraulic model was established to describe the mechanism of transient cuttings transport with foam fluid in horizontal well section. The model was numerically calculated based on the modified SIMPLE algorithm, and the height of cuttings bed was predicted by the trial-and-error method. Sensitivity analysis was conducted on the affecting factors on the cuttings transport performance. Results show that cuttings deposition moves along the horizontal wellbore from the drilling bit, and finally achieves a steady state with dynamic balance. Dimensionless cuttings bed height decreases with the increase of foam quality or foam flow rate, but increases with the increase of drillpipe eccentricity, cuttings size or drilling rate. The influx of water and gas from the reservoir is helpful to improve the cuttings transport efficiency with foam. The proposed model offers theoretical guidelines for hydraulic parameter design and hole cleaning control in foamed horizontal drilling.