This paper presents a novel algorithm for identifying quadric surfaces from scanned mechanical models. We make several important improvements over the existing variational 3D shape segmentation framework, which utilizes Lloyd's iteration. First, instead of using randomized initialization (which likely falls into non-optimal minimum), the RANSAC-based initialization approach is adopted. Given a good initialization, our method converges quickly than previous approaches. Second, in order to enhance the stability and the robustness, we carefully modify the distortion-minimizing flooding algorithm by using seed regions instead of seed triangles. Third, the geometric constraints are introduced into the optimization framework. The segmentation quality is further improved. We validate the efficiency and the robustness of our proposed method on various datasets, and demonstrate that our method outperforms state-of-art approaches.
Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods often fail to efficiently remove poor-quality elements especially in regions with sharp features. In this paper, we propose and use a robust segmentation method followed by remeshing the segmented mesh. Mesh segmentation is initiated using an existing Live-wire interaction approach and is further refined using local mesh operations. The refined segmented mesh is finally sent to the remeshing pipeline, in which each mesh segment is remeshed independently. An experimental study compares our mesh segmentation method as well as remeshing results with representative existing methods. We demonstrate that the proposed segmentation method is robust and suitable for remeshing.