Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state DNP based on Overhauser effect is capable of directly enhancing polarization of all kinds of nuclei in the system. The combination of simultaneous Overhauser multi-nuclei enhancements with the multi-nuclei parallel acquisitions provides a variety of important applications in both MR spectroscopy (MRS) and image (MRI). Here we present two simple illustrative examples for simultaneously enhanced multi-nuclear spectra and images to demonstrate the principle and superiority. We have observed very large simultaneous DNP enhancements for different nuclei, such as XH and 23Na, 1H and 31p, 19F and 31p, especially for the first time to report sodium ion enhancement in liquid. We have also obtained the simultaneous images of 19H and 31p, 19F and 31p at low field by solution-state DNP for the first time.
Yugui HeZhen ZhangJiwen FengChongyang HuangFang ChenChaoyang LiuMaili Liu
The critical aggregation concentration(CAC) of four with three kinds of conventional surfactants, namely,two cationic surfactants [hexadecyltrimethyl ammonium bromide(CTAB) and tetradecyltrimethyl ammonium bromide(TTAB)], one anionic surfactant [sodium dodecyl sulfate(SDS)], and a nonionic surfactant [Triton X-100(TX-100)], were determined by variation of ^1H chemical shifts with surfactant concentrations. Results show that the CAC values of protons at different positions of the same molecule are different, and those of the terminal methyl protons are the lowest, respectively, which suggests that the terminal groups of the alkyl chains aggregates first during micellization. Measurement of the transverse relaxation time(T2) of different protons in SDS also show that the terminal methyl protons start to decrease with the increase in concentration first, which supports the above mentioned tendency.
Gang-Jin YuXiao-Ying ChenShi-Zhen MaoMai-Li LiuYou-Ru Du