Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining diff^culties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for soft- brittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.
A potassium dihydrogen phosphate(KDP) optical crystal was machined to an ultra-precision surface with water-in-oil(W/O) micro emulsion polishing fluid. The micro water dissolution principle utilized in the machining process is discussed, its planarization mechanism is illustrated, and an ultra-precision polished surface with 2.205 nm RMS roughness is obtained. However, a substantial quantity of residual contamination remained on the polished surface after machining. This can seriously impact the optical performance of the crystal, and so it must be removed. Fourier transform infrared(FTIR) spectroscopy was used to conduct an investigation into the composition of the surface residue, and the results showed that the residue was comprised of organic chemicals with hydrocarbon chains and aromatic ether, i.e., mostly the polishing fluid. The cleaning method and the principle on which the KDP ultra precision surface investigation is based are discussed in detail, and the cleaning experiments with selected KDP-compatible organic solvents were then performed. FTIR transmittance spectra measurement and microscopic observations were employed to assess the effects of the cleaning process on the surface of the KDP crystal. The results showed that toluene cleaning achieved the most desirable results. This cleaning method produced a surface roughness of 1.826 nm RMS, which allows the KDP crystal to be applied to subsequent engineering applications.
在KDP晶体(001)晶面上进行了四种压头(即:维氏压头、玻氏压头、圆锥压头、球形压头)的纳米压痕仿真研究。仿真结果表明:完全加载时四种压头与KDP晶体接触位置存在不同程度应力集中。当载荷在0-8 m N范围内时,其与等效应力影响深度呈近似线性递增关系。完全卸载时,残余应力分布深度为1.3-1.5μm。相同载荷条件下,各压头对应的塑性损伤层深度之间关系与等效应力影响深度之间关系一致。此外,通过纳米压痕实验验证了KDP晶体材料模型及相关参数的正确性。
The nanohardness is from 1.44 to 2.61 GPa,the Vickers hardness is from 127 to 252 Vickers,and elastic modulus is from 52 to 123 GPa by the nanoindentation experiments on the doubler plane of KDP crystal. An indentation size effect is observed on the doubler plane in the test as the nanohardness and elastic modulus decreases with the increase of the maximum load.Slippage is identified as the major mode of plastic deformation, and pop-in events are attributed to the initiation of slippage.And the variation of unloading curve end is the result of stick effects between the indenter and the contact surface.The depth of the elastic deformation,which is between 40 and 75 nm,is responsible for the elastic deformation.The doubler plane of KDP crystal has anisotropy,and the relative anisotropy of nanohardness is 8.2%and the relative anisotropy of elastic modulus is 8.0%.
In this paper, a micro water dissolution machining (MWDM) principle is proposed for machining potassium dihydrogen phosphate (KDP) crystal using water-in-oil micro-emulsion as an abrasive-free polishing fluid. In addition, two instances of the application of this principle to ultra-precision machining of KDP crystals are presented. Computer-controlled optical surfacing (CCOS) and diamond wire cutting (DWC) process were carried out according to the MWDM principle. In the case of the CCOS technology, it is found that the micro-waviness was removed completely by following the MWDM principle. The surface undulation decreased from 40 nm to less than 10 nm, and the surface root-mean-square (rms) roughness obviously reduced from 8.147 to 2.660 nm. In the case of the DWC process, the surface rms roughness reduced from 8.012 to 2.391 gm, and the cutting efficiency was improved. These results indicate that the MWDM principle can efficiently improve the machining quality of KDP optical crystal and has a great potential to machine water-soluble materials.
Large-sized potassium dihydrogen phosphate(KDP)crystals are an irreplaceable nonlinear optical component in an inertial confinement fusion project.Restricted by the size,previous studies have been aimed mainly at the removal principle and surface roughness of small-sized KDP crystals,with less research on flatness.Due to its low surface damage and high machining efficiency,water dissolution ultraprecision continuous polishing(WDUCP)has become a good technique for processing large-sized KDP crystals.In this technique,the trajectory uniformity of water droplets can directly affect the surface quality,such as flatness and roughness.Specifically,uneven trajectory distribution of water droplets on the surface of KDP crystals derived from the mode of motion obviously affects the surface quality.In this study,the material removal mechanism of WDUCP was introduced.A simulation of the trajectory of water droplets on KDP crystals under different eccentricity modes of motion was then performed.Meanwhile,the coefficient of variation(CV)was utilized to evaluate the trajectory uniformity.Furthermore,to verify the reliability of the simulation,some experimental tests were also conducted by employing a large continuous polisher.The results showed that the CV varied from 0.67 to 2.02 under the certain eccentricity mode of motion and varied from 0.48 to 0.65 under the uncertain eccentricity mode of motion.The CV of uncertain eccentricity is always smaller than that of certain eccentricity.Hence,the uniformity of trajectory was better under uncertain eccentricity.Under the mode of motion of uncertain eccentricity,the initial surface texture of the100 mm×100 mm×10 mm KDP crystal did achieve uniform planarization.The surface root mean square roughness was reduced to 2.182 nm,and the flatness was reduced to 22.013μm.Therefore,the feasibility and validity of WDUCP for large-sized KDP crystal were verified.