The pth moment Lyapunov exponent of a two-codimension bifurcation systern excited parametrically by a real noise is investigated. By a linear stochastic transformation, the differential operator of the system is obtained. In order to evaluate the asymptotic expansion of the moment Lyapunov exponent, via a perturbation method, a ralevant eigenvalue problem is obtained. The eigenvalue problem is then solved by a Fourier cosine series expansion, and an infinite matrix is thus obtained, whose leading eigenvalue is the second-order of the asymptotic expansion of the moment Lyapunov exponent. Finally, the convergence of procedure is numerically illustrated, and the effects of the system and the noise parameters on the moment Lyapunov exponent are discussed.
Based on the theory of the complex variable functions, the analysis of non-axisymmetric thermal stresses in a finite matrix containing a circular inclusion with functionally graded interphase is presented by means of the least square boundary collocation technique. The distribution of thermal stress for the functionally graded interphase layer with arbitrary radial material parameters is derived by using the method of piece-wise homogeneous layers when the finite matrix is subjected to uniform heat flow. The effects of matrix size, interphase thickness and compositional gradient on the interfacial thermal stress are discussed in detail. Numerical results show that the magnitude and distribution of interfacial thermal stress in the inclusion and matrix can be designed properly by controlling these parameters.
We investigate the stochastic resonance (SR) phenomenon induced by the periodic signal in a metapopulation system with colored noises. The analytical expression of signal-to-noise is derived in the adiabatic limit. By numerical calculation, the effects of the addictive noise intensity, the multiplicative noise intensity and two noise self-correlation times on SNR are respectively discussed. It shows that: (i) in the case that the addictive noise intensity M takes a small value, a SR phenomenon for the curve of SNR appears; however, when M takes a large value, SNR turns into a monotonic function on the multiplicative noise intensity Q. (ii) The resonance peaks in the plots of the multiplicative noise intensity Q versus its self-correlation time Vl and the addictive noise intensity M versus its self-correlation time ~2 translate in parallel. Mean- while, a parallel translation also appears in the plots of vl versus Q and v2 versus M. (iii) The interactive effects between self-correlation times Vl and v2 are opposite.