A single-mode optical fiber with a convex chromatic dispersion profile is proposed for generating a flat supercontinuum(SC).The fiber has normal dispersion and the dispersion parameter D(λ,z) is a convex function of wavelengths.It is shown from the numerical results that the chromatic dispersion,the flatness of the dispersion curve and the pump conditions have significant effect on SC generation.A flat and broad SC without strong residual pump component can be obtained when the pump wavelength is set in the vicinity of the wavelength at which the fiber has small normal group-velocity dispersion(GVD) and small dispersion slope.The fiber with a smaller normal GVD,a flatter dispersion profile and a higher nonlinear coefficient are more suitable for broad SC generation.
A dispersion-flattened photonic crystal fiber with normal dispersion is designed for generating flat wideband supercontanuum, and the supercontinuum generation in this fiber is numerically analyzed. The results show that by appropriately designing the photonic crystal fiber, it can achieve flattened dispersion in the normal dispersion region. It is found that a fiber characterized by a flattened dispersion with a small normal dispersion is suitable for a flat wideband supercontinuum generation. In the process of spectral broadening, self-phase modulation effect plays a dominant role. By filtering the supercontinuum, pulses with different central wavelength over a wide spectral range can be obtained. The pulse width is determined by the bandwidth of the filter.