The preparation and electrical properties of diamond nanocones are reviewed, including a maskless etching pro- cess and mechanism of large-area diamond conical nanostructure arrays using a hot filament chemical vapor deposition (HFCVD) system with negatively biased substrates, and the field electron emission, gas sensing, and quantum transport properties of a diamond nanocone array or an individual diamond nanocone. Optimal cone aspect ratio and array density are investigated, along with the relationships between the cone morphologies and experimental parameters, such as the CH4/H2 ratio of the etching gas, the bias current, and the gas pressure. The reviewed experiments demonstrate the possi- bility of using nanostructured diamond cones as a display device element, a point electron emission source, a gas sensor or a quantum device.
Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser,even at room temperature.However,the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface.To address this issue,we fabricated arrays of diamond nanostructures,differing in both diameter and top end shape,with HSQ and Cr as the etching mask materials,aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy(NV) embedded diamond.With a mixture of O2 and CHF3 gas plasma,diamond pillars with diameters down to 45 nm were obtained.The top end shape evolution has been represented with a simple model.The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement,larger than tenfold,and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected.These results provide useful information for future applications of nanostructured diamond as a single-photon source.