The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.
Qingtao FuTingting HeLianqing YuYongming ChaiChenguang Liu