Suitable rescue path selection is very important to rescue lives and reduce the loss of disasters, and has been a key issue in the field of disaster response management. In this paper, we present a path selection algorithm based on Q-learning for disaster response applications. We assume that a rescue team is an agent, which is operating in a dynamic and dangerous environment and needs to find a safe and short path in the least time. We first propose a path selection model for disaster response management, and deduce that path selection based on our model is a Markov decision process. Then, we introduce Q-learning and design strategies for action selection and to avoid cyclic path. Finally, experimental results show that our algorithm can find a safe and short path in the dynamic and dangerous environment, which can provide a specific and significant reference for practical management in disaster response applications.