Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.
Toxic elements in the atmosphere can enter and accumulate in the human body, seriously impacting human health. In this study, we analyzed a 14-year (1995-2008) measurement of three toxic elements (As, Cd and Cr) in PMlo in Hong Kong, China. The pollution of these toxic elements in Hong Kong was not serious. The trend analysis showed that As and Cr in PM10 increased at a statistically significant level (p〈0.05) during the 14-year period, while the Cd in PM10 did not change significantly. Typical seasonal variations were observed for all three toxic elements, largely in relation to the Asian monsoon. Hourly 10-day backward trajectories were computed and cate- gorised into four groups. The continental air masses showed much higher concentrations of the three toxic elements than the marine air masses. The abundances of As and Cd in the PM10 were much higher in the continental air masses than those in the marine air masses, while the abundances of Cr showed an opposite pattern. The trends of the three toxic elements in East China's air mass were consistent with those in the overall data set ofHong Kong. Examination of the toxic element data recorded at urban sites and a roadside site also indicated a large contribution of external air masses to particulate As and Cd in Hong Kong. These results suggest that the long-range transport from the mainland of China is the dominant contributor to particulate As and Cd, while both local and long-distance sources determine the particulate Cr in Hong Kong.
To understand the size-resolved aerosol ionic composition and the factors influencing secondary aerosol formation in the upper boundary layer in South Central China, size-segregated aerosol samples were collected using a micro-orifice uniform deposit irnpactor (MOUDI) in spring 2009 at the summit of Mount Heng (1269 m asl), followed by subsequent laboratory analyses of 13 inorganic and organic water-soluble ions. During non- dust-storm periods, the average PM1.8 concentration was 41.8 μg·m^-3, contributing to 55% of the PM10. Sulfates, nitrates, and ammonium, the dominant ions in the fine particles, amounted to 46.8% of the PM1.8. Compared with Mount Tai in the North China Plain, the concentrations of both fine and coarse particles and the ions contained therein were substantially lower. When the air masses from Southeast Asia prevailed, intensive biomass burning there led to elevated concentrations of sulfates, nitrates, ammonium, potassium, and chloride in the fine particles at Mount Heng. The air masses originating from the north Gobi brought heavy dust storms that resulted in the remarkable production of sulfates, ammonium, methane sulfonic acid, and oxalates in the coarse particles. Generally, the sulfates were primarily produced in the form of (NH4)2SO4 in the droplet mode via heterogeneous aqueous reactions. Only approximately one-third of the nitrates were distributed in the fine mode, and high humidity facilitated the secondary formation of fine nitrates. The heterogeneous formation of coarse nitrates and ammonium on dry alkaline dust surfaces was found to be less efficient than that on the coarse particles during non-dust-storm periods.