The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.
ZhangJun Xie Qiang Liu Juan Yang Mingshun Yao Xing
Coal-based Magnetic Activated Carbons (CMAC's) were prepared from three representative coal samples of various ranks: Baorigele lignite from Inner Mongolia; Datong bitumite from Shanxi province; and Taixi anthracite from Ningxia Hui Auto- nomous Region. Fe3O4 was used as a magnetic additive. A nitrogen-adsorption analyzer was used to determine the specific surface area and pore structure of the resulting activated carbons. The adsorption capacity was assessed by the adsorption of iodine and methylene blue. X-ray diffraction was used to measure the evolution behavior of Fe304 during the preparation process. Magnetic properties were characterized with a vibrating-sample magnetometer. The effect of the activation temperature on the performance of CMAC's was also studied. The results show that, compared to Baorigele lignite and Taixi anthracite, the Datong bitumite is more appropriate for the preparation of CMAC's with a high specific surface area, an advanced pore structure and suitable magnetic properties. Fe304 can effectively enhance the magnetic properties and control the pore structure by increasing the ratio of meso- pores. An addition of 6.0% Fe304 and an activation temperature of 880 ℃ produced a CMAC having a specific surface area, an iodine adsorption, a methylene blue adsorption and a specific saturation magnetization of 1152.0 m2/g, 1216.7 mg/g, 229.5 mg/g and 4.623 emu/g, respectively. The coal used to prepare this specimen was Datong bitumite.
YANG Mingshun XIE Qiang ZHANG Jun LIU Juan WANG Yan ZHANG Xianglan ZHANG Qingwu
A series of granular activated carbons (GACs) were prepared by briquetting method from Chinese coals of different ranks and their blends, with coal pitch as the binder. Pore structural parameters including BET specific surface area (SBEr), total pore volume (Vr) and average pore diameter (da) were measured and cal- culated as well as process parameters such as yield of char (CY) and burn-off (B). The relationship between the pore structural parameters of the GAC from coal blend (BC-GAC) and the ones of the GACs from corresponding single coals (SC-GACs) was analyzed, in which an index, the relative error (δ), was presented to define the bias between fitted values and experimental values of these parameters of the BC-GACs. The results show that the BC-GAC keeps qualitatively the pore structural features of the SC-GACs; as concerned as the quantitative relationship, the pore structural parameters of the BC-GAC from coal blend consisting of non-caking coals can be obtained by adding proportionally the pore structural parameters of the SC-GACs with a less than 10%. Meanwhile, for the BC-GAC from coal blend containing weak caking bituminous coal, the δ increases up to 25% and the experimental pore size distribution differs greatly from the fitted one.
Yao XinXie QiangYang ChuanZhang BoWan ChaoranCui Shanshan