In this review we have summarized some recent results mainly reported by our group that focused on the development of smart gating nanochannels based on polymer films. These nanochannels were prepared using a track-etch process. The responsive materials/molecules and modification methods/techniques have also been demonstrated, from which we have obtained a series of smart gating nanochannels that can respond to single/dual external stimuli, e.g., pH, ion, temperature, light, and so on. These studies utilize responsive behaviors to regulate ionic transport properties inside a single nanochannel and demonstrate the fea-sibility of designing other smart nanodevices in the future.
Biological light-driven proton pumps which could transfer light energy to electrical energy have aroused intense interest in the past years.Many related researches have been conducted to mimic this process in vitro because of its potential significant applications.This review describes the progress in biomimetic photoelectric conversion systems based on different kinds of promising artificial membranes.Both biological bacteriorhodopsin and the photosensitive chemical molecules which could be used to achieve the photoelectric conversion function are discussed.Also a short outlook in this field is demonstrated at the end.