四川省科技支撑计划(2011GZ0171)
- 作品数:3 被引量:24H指数:2
- 相关作者:姚宇付忠良付丽娟李小伟伍岳庆更多>>
- 相关机构:中国科学院大学中国科学院成都计算机应用研究所更多>>
- 发文基金:四川省科技支撑计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 中值滤波与各向异性扩散相结合的医学图像滤波方法被引量:19
- 2014年
- 医学图像的滤波处理,须保留具有重要诊断意义的边缘细节信息。针对Perona-Malik(PM)各向异性扩散模型遇到强噪声则失效和扩散门限参数K依靠经验选取的不足,提出了一种改进的各向异性扩散算法。将PM算法与中值滤波结合,用经过中值滤波平滑后的梯度模代替原始图像的梯度模,以控制扩散的过程。应用自适应扩散门限(当前邻域内梯度的绝对偏差中值(MAD))和迭代终止准则,提高算法鲁棒性和效率。实验分别对超声心动图、CT图像和Lena图像进行去噪处理,用峰值信噪比(PSNR)和边缘保持能力EPI作为评价标准。实验结果表明,改进算法优于PM算法和Catte-PM方法,在提高信噪比的同时保留了图像的细节信息,可以更好地满足医学图像的使用要求。
- 付丽娟姚宇付忠良
- 关键词:医学图像中值滤波
- 基于小波多尺度聚类水平集的医学图像分割被引量:4
- 2014年
- 针对医学图像低对比度、灰度不均匀等特点,提出了一种小波多尺度聚类水平集的图像分割方法,能够很好地解决医学图像灰度不均匀的问题。首先,利用小波多尺度分析的良好信噪分离能力提取各尺度下图像的有效边缘信息,将边缘信息添加到水平集模型的能量函数中从而提高模型的局部控制能力。然后,基于灰度不均匀的图像模型,派生出对于感兴趣区域的局部灰度聚类,在每个点的邻域内定义基于灰度的局部聚类准则函数。将局部聚类准则函数转化为全局准则函数。在水平集框架中,该准则根据水平集函数定义了代表图像域划分的能量项和引起图像强度不均匀的偏置域。最后,从小波变换的顶层低频子带图像开始逐层采用改进的聚类水平集方法分割图像,并将分割结果通过插值方式传递至下一层作为分割的初始轮廓,最终实现灰度不均匀医学图像的分割。实验结果表明,该方法能够有效地分割医学图像,具有计算更加鲁棒稳定、效率更高和更加准确的优点。
- 李小伟伍岳庆姚宇
- 关键词:灰度不均匀医学图像水平集图像分割
- 基于Ranking Loss的多标签分类集成学习算法被引量:1
- 2013年
- 针对目标可以属于多个类别的多标签分类问题,提出了一种基于Ranking Loss最小化的集成学习方法。算法基于Real AdaBoost算法的核心思想,从Ranking Loss定义出发,以Ranking Loss在样本空间最小化为目标,采取迭代的方法训练多个弱分类器,并将这些弱分类器集成起来构成强分类器,强分类器的Ranking Loss随着弱分类器个数的增加而逐渐减少,并给出了算法流程。通过理论分析和实验数据对比验证了提出的多标签分类算法的有效性和稳定性。
- 任志博王莉莉付忠良张丹普杨燕霞
- 关键词:ADABOOST算法分类器组合