This paper studies the stationary probability density function(PDF) solution of a nonlinear business cycle model subjected to random shocks of Gaussian white-noise type. The PDF solution is controlled by a Fokker–Planck– Kolmogorov(FPK) equation, and we use exponential polynomial closure(EPC) method to derive an approximate solution for the FPK equation. Numerical results obtained from EPC method, better than those from Gaussian closure method, show good agreement with the probability distribution obtained with Monte Carlo simulation including the tail regions.
The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.