The microstructure formation and mechanical property involving icosahedral quasicrystal (I-phase) in the Y-rich Mg-Zn-Y alloy have been studied. The equilibrium formation of I-phase from the Y-rich Mg-Zn-Y melt is through a peritectic reaction between the Y-rich melt and the primary W-phase, which is discussed in detail. The independent nucleation and coupling growth mechanism between the W-phase and the I-phase, from the melt, are revealed, which is significant for understanding the peritectic reaction process involving icosahedral quasicrystal in the Mg-Zn-Y alloy. The mechanism of the quasicrystal phase strengthened magnesium alloys is also discussed here.
The dynamic mechanical analyzer(DMA)was applied to investigate the damping properties of Mg-Cu based alloys.The results show that the as-cast hypoeutectic Mg-Cu binary alloys exhibit ultra-high damping capacities,while the eutectic Mg-Cu alloy exhibits low damping capacity.The strain amplitude dependent damping performance reveals that the dislocation damping mainly dominates in Mg-Cu alloys.Furthermore,the influence of eutectic phase on damping mechanisms of Mg-Cu binary alloys was discussed in detail and the effect of Si addition on the damping of Mg-1%Cu based alloy was also reported.Two damping peaks are observed on the temperature dependent spectrum of Mg-Cu based alloys.One is located at room temperature,which is dislocation related peak;and the other is located at moderate temperature,which is caused by the grain boundary sliding.