The new biofilm-electrode method was used for the phenol degradation, because of its low current requirement. The biofilm-electrode reactor consisted of immobilized degrading bacteria on Ti electrode as cathode and Ti/PbO2 electrode as anode. With the biofilmelectrode reactor in a divided electrolytic cell, the phenol degradation rate could achieve 100% at 18 h which was higher than using traditional methods, such as biological or electrochemical methods. Chemical oxygen demand (COD) removal rate of the biofilmelectrode reactor was also greater than that using biological and electrochemical method, and could reach 80% at 16 h. The results suggested that the biofilm-electrode reactor system can be used to treat wastewater with phenol.
Effect of configuration (structure of electrode, interelectrode gap, positions of inlet and outlet, volume of the cell and additional nets) on mass transfer characteristic of a filter-press type electrochemical cell has been studied. The mass transfer coefficients on the electrodes were obtained by using the well-known technique based on the determination of limiting diffusion current. It is found that mass transfer coefficients with mesh electrode are greater than that of with plate electrode. Mass transfer coefficient is decreased with interelectrode gap. While interelectrode gap achieved a certain value (7 ram), mass transfer coefficient is steady, no more declining. Mass transfer characteristic for different positions of inlet and outlet are different and dimensionless number groups correlated equations are obtained by experiment. Mass transfer characteristic is the best when inlet located on the top and outlet on the bottom of the cell respectively. While magnified the volume of the cell to eight times, mass transfer characteristic changes little. Mass transfer characteristic without nets is lower than that of with additional nets in the exit region, but higher than that of with additional nets in the entry region.