研究了核主分量分析(KPCA,Kernel Principal Component Analysis)在高分辨雷达目标特征提取与识别中的应用。首先讨论了KPCA算法原理,然后将KPCA应用于雷达目标距离像特征提取,并采用支持向量机进行分类,提出了基于核主分量分析的高分辨雷达目标特征提取与识别方法。在核函数的选取上构造了一个组合核函数,最后用4类目标数据进行了实验,并与采用高斯核函数方法进行了比较,实验结果表明,该方法能够提高目标识别性能。
文章研究了核直接判别分析(kernel direct discriminant analysis,KDDA)在高分辨雷达目标特征提取与识别中的应用。KDDA算法是传统的LDA算法与核方法的结合,文中讨论了KDDA算法原理,首先将KDDA应用于雷达目标距离像特征提取,求取更易于分类的核投影向量,然后采用支持向量机进行分类,提出了基于核直接判别分析的高分辨雷达目标特征提取与识别方法。用四类目标数据进行了实验,实验结果表明,该方法能够提高目标识别性能。