Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonics PN(x) of order≤N and a constant C〉0 such that where ω(f,δ)L^p=sup 0〈t≤δ‖St(f)-f‖L^p is a kind of moduli of continuity and ^‖f-1/PN‖L^p≤Cω(f,N^-1)L^p,St(f,μ)=1/|S^q-2|Sin^2λt ∫-μμ’=t f(μ')dμ' is a translation operator.
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
A sequence of spherical zonal translation networks based on the Bochner-Riesz means of spherical harmonics and the Riesz means of Jacobi polynomials is introduced, and its degree of approximation is achieved. The results obtained in the present paper actually imply that the approximation of zonal translation networks is convergent if the action functions have certain smoothness.
Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci is nondecreasing with respect to i and a(i) + u(i) - ci ≥ 0 (i≥ 0), then VarX(t)-EX(t)≥-X(0)e^-2ct,t≥0,or (ii) if there exists a constant u(i) - c≥ 0 such that b(i)-a(i)+ci is non-increasing with respect to i and a(i)+u(i)-ci≤0(i≥0),then VarX(t) - EX(t) ≤ -X(0)e^-2c,t ≥ 0 Hereb(i) = qii+1, a(0) = 0, a(i) = ∑j=^ijqii-j (i≥ 1), u(0) = u(1) =0 and u(i) = 1/2∑j=^ij(j - 1)qii-j (i ≥ 2) . This result covers the results for birth-death processes obtained in [7].
The degree of approximation of spherical functions by the translations formed by a function defined on the unit sphere is dealt with. A kind of Jackson inequality is established under the condition that none of the L^2(S^q) norms of the orthogonal projection operators of the translated function are zeros. In the present paper we show that the spherical translations share the same degree of approximation as that of spherical harmonics.