Let M be a compact minimal hypersurface of sphere Sn+1(1). Let M be H(r)-torus of sphere Sn+1(1).Assume they have the same constant mean curvature H, the result in [1] is that if Spec0 (M, g) =Spec0(M, g),then for 3 ≤ n ≤ 6,r2 ≤n-1/n or n > 6,r2 ≥ n-1/n, then M is isometric to M. We improvedthe result and prove that: if Spec0(M, g) =Spec0(M, g), then M is isometric to M. Generally, if Specp(M,g) =Specp(M, g), here p is fixed and satisfies that n(n - 1) ≠ 6p(n - p), then M is isometric to M.
Let M be an n(≥ 3)-dimensional completely non-compact spacelike hypersurface in the de Sitter space S1^n+1 (1) with constant mean curvature and nonnegative sectional curvature. It is proved that M is isometric to a hyperbolic cylinder or an Euclidean space if H ≥ 1. When 2√n-1/n〈 H 〈 1, there exists a complete rotation hypersurfaces which is not a hyperbolic cylinder.
Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spacetime Sp^m+p∪→Ep^m+p+1 (P ≥ 1) must be totally umbilical, and also totally geodesic. Particularly, when p = 1, our result is just Montiel's in case of H = 0.