We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.
A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.
An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.sAs. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied.