Mesoporous TiO_2-B/anatase microparticles have been in-situ synthesized from K_2Ti_2O_5 without template.The TiO_2-B phase around the particle surface accelerates the diffusion of charges through the interface,while the anatase phase in the core maintains the capacity stability.The heterojunction interface between the main polymorph of anatase and the trace of TiO_2-B exhibits promising lithium ion battery performance.This trace of 5%(by mass) TiO_2-B determined by Raman spectra brings the first discharge capacity of this material to 247 mA · h ·g^(-1),giving 20%improvement compared to the anatase counterpart Stability testing at 1 C reveals that the capacity maintains at 171 mA·h·^(-1),which is better than 162 mA·h·g^(-1) for single phase anatase or 159 mA·h·g^(-1) for TiO_2-B.The mesoporous TiO_2-B/anatase rnicroparticles also show superior rate performance with 100 mA·h·g^(-1) at 40 C,increased by nearly 25%as compared to pure anatase.This opens a possibility of a general design route,which can be applied to other metal oxide electrode materials for rechargeable batteries and supercapacitors.
Interfacial transfer plays an important role in multi-phase chemical processes. However, it is difficult to describe the complex interfacial transport behavior by the traditional mass transfer model. In this paper, we describe an interfacial mass transfer model based on linear non-equilibrium thermodynamics for the analysis of the rate of interfacial transport. The interfacial transfer process rate J depends on the interface mass transfer coefficient K, interfacial area A and chemical potential gradient at the interface. Potassium compounds were selected as model systems. A model based on linear non-equilibrium thermo-dynamics was established in order to describe and predict the transport rate at the solid-solution interface. Together with accurate experimental kinetic data for potassium ions obtained using ion-selective electrodes, a general model which can be used to describe the dissolution rate was established and used to analyze ways of improving the process rate.
The essential requirements for evaluating the sustainable development of a system and the thermodynamic framework of the energy conservation mechanism in the waste-removal process are proposed.A thermodynamic method of analysis based on the first and second laws of thermodynamics is suggested as a means to analyze the theoretical energy consumption for the removal of organic contaminants by physical methods.Moreover,the theoretical energy consumption for the removal by physical methods of different kinds of representative organic contaminants with different initial concentrations and amounts is investigated at 298.15 K and 1.01325 × 105 Pa.The results show that the waste treatment process has a high energy consumption and that the theoretical energy consumption for the removal of organic contaminants increases with the decrease of their initial concentrations in aqueous solutions.The theoretical energy consumption for the removal of different organic contaminants varies dramatically.Furthermore,the theoretical energy consumption increases greatly with the increase in the amount to be removed.
Ji, Yuan Hui Lu, Xiao Hua Yang, Zhu Hong Feng, Xin
In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.