Biological soil crusts(biocrusts) widely occur in semiarid and arid regions throughout the world and play important roles in many desert ecosystems: protecting soil from wind erosion and detaining nutrient-rich dust and organic carbon. An experiment was conducted in the Shapotou revegetated area of the Tengger Desert, Ningxia Hui Autonomous Region of China to investigate the physiological responses of the dominant biocrust mosses, Bryum argenteum and Didymodon vinealis, to desiccant stress using different osmotic adjustments. B. argenteum and D. vinealis accumulated K+, total soluble sugar, sucrose, trehalose, proline, and glycine betaine during desiccation. The proline content of B. argenteum was about two times higher than that of D. vinealis. The K+and glycine betaine contents in B. argenteum were slightly higher than those in D. vinealis. In contrast, the total soluble sugar, sucrose,and trehalose contents in D. vinealis were about 3 to 5 times higher than those in B. argenteum. With gradual desiccation stress,the Na+content of B. argenteum was low and did not significantly change. On the contrary, the Na+content of D. vinealis sharply increased and reached a very high level of about 10 to 18 times higher than that of B. argenteum, indicating that B. argenteum and D. vinealis gradually adapted to desiccation stress by osmotic substances accumulation to different degrees.