GaN epifilms are grown on the patterned sapphire substrates (PSS) (0001) and the conventional sapphire substrates (CSS) (0001) by metal-organic chemical vapor deposition (MOCVD) using a novel two-step growth. High resolution X-ray diffraction (HR-XRD) is used to investigate the threading dislocation (TD) density of the GaN epifilms. The TD density is calculated from the ω-scans full width at half maximum (FWHM) results of HR-XRD. The edge dislocation destiny of GaN grown on the PSS is 2.7×108 cm-2, which is less than on the CSS. This is confirmed by the results of atomic force microscopy (AFM) measurement. The lower TD destiny indicates that the crystalline quality of the GaN epifilms grown on the PSS is improved compared to GaN epifilms grown on the CSS. The residual strains of GaN grown on the PSS and CSS are compared by Raman Scattering spectra. It is clearly seen that the residual strain in the GaN grown on PSS is lower than on the CSS.
ZHANG YuChao1, XING ZhiGang2, MA ZiGuang2, CHEN Yao2, DING GuoJian2, XU PeiQiang2, DONG ChenMing3, CHEN Hong2 & LE XiaoYun1 1 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100190, China
Nonpolar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire by metal-organic chemical vapor deposition (MOCVD) under different growth pressures. The as-grown films are investigated by optical microscopy, high-resolution X-ray diffraction (HRXRD) and Raman scattering. As growth pressure rises from 100 mbar to 400 mbar, the surface gets rougher, and the in-plane XRD full width at half maximum (FWHM) along the c-axis [0001] increases while that along the m-axis [1100] decreases. Meanwhile, residential stresses are reduced along both the c-axis and the m-axis. The structural anisotropy feature under 400 mbar is inverted with respect to 100 mbar, and the weakened anisotropy is achieved under a moderate pressure of 200 mbar, probably due to the suppressed Ga atomic migration along the c-axis under a larger pressure. We propose that pressure can affect a-plane growth through the V/III ratio.
HE TaoLI HuiDAI LongGuiWANG XiaoLiCHEN YaoMA ZiGuangXU PeiQiangJIANG YangWANG LuJIA HaiQiangWANG WenXinCHEN Hong
The impact of nanoporous SiN x interlayer growth position on high-quality GaN epitaxial film was elucidated from the behavior of dislocations. The best quality GaN film was achieved when a nanoporous SiN x interlayer was grown on a rough layer, with the high-resolution X-ray diffraction rocking curve full width at half maximum for ( 1102 ) reflection decreasing to 223 arcs, and the total dislocation density reduced to less than 1.0×10 8 cm 2 . GaN films were grown on sapphire substrates by metal organic chemical vapor deposition. The quality of these films was investigated with high-resolution X-ray diffraction, atomic force microscopy, and cross-sectional transmission electron microscopy. A preference for the formation of half-loops to reduce threading dislocations was observed when an SiN x interlayer was grown on a rough layer. A growth mechanism is proposed to explain this preference.
MA ZiGuang XING ZhiGang WANG XiaoLi CHEN Yao XU PeiQiang CUI YanXiang WANG Lu JIANG Yang JIA HaiQiang CHEN Hong