n-Si(111) surface tailed -C2H5, -C2H4COOH, -C2H2COOH were prepared by the reactions among Si-H to ethyl-Grignard, methyl acrylate and ethyl propionate, and the carboxyls were formed under the existence of trifluoroacetic acid. The composite n-Si(111) electrodes were obtained by depositing Pt nanodots and the photovoltaic characteristics for these electrodes were studied in I^-/I3^- redox electrolyte. The j-U (photo current density-potential) behaviors of photo-voltage and photocurrent densities to the electrodes under solar illumination varied regularly with groups of -C2H2COOH〉-C2H4COOH〉-H〉-C2H5. The photo-voltage and photocurrent density of the electrode tailed -C2 H2COOH were -0.641 V and 5.25 mA/cm^2, respectively, more negative than those of the non-conjugated modification.
A new method of infiltration-diffusion is used to synthesize macroscopic α-Zr(C6H5PO3)2 (α-ZrBP) tube. Compared to the routine method, no HF was used and a fiberlike product with several millimeters in length was obtained. SEM (scanning electronic microscopy) result indicates that these fibers are tubes. The wall of the tubes is composed of the flake of α-ZrBP overlapped with each other. As we know, it is the first report on the synthesis of millimeter-scale supramolecular assembly of α-ZrBP.