应用计算流体力学(CFD)软件对一台带有废气再循环(Exhaust gas recirculation,EGR)系统的均质缸内直喷(Gasoline direct-injection,GDI)汽油机进气冲程至作功冲程排气门开启时段进行了三维仿真,研究了不同EGR率和过量空气系数λ对缸内状态及排放特性的影响,探讨了温度场、火焰面密度、NO浓度场、CO浓度场、微粒浓度场等参数的变化趋势。结果表明:EGR率为10%时,能在对燃烧过程影响不大的情况下有效降低排放质量;同时,在缸压稍有下降的情况下,λ=1.1时能有效降低排放质量;λ=1.0时能保持较高的缸压和中等的排放水平。
The effects of EGR and ignition timing on engine emissions and combustion were studied through an experiment carried out on an air-guided GDI engine.The test results showed that the ignition timing significantly affected the GDI engine emissions,that the NOx emissions significantly reduced when the ignition timing was retarded,and that NOx emissions decreased with the EGR level increasement.A higher EGR rate could reduce CO emissions while the CO emissions were less affected by the ignition timing.The HC emissions decreased at a lower EGR rate.At 2500 r/min,an appropriate EGR rate could cut down CO emissions.The exhaust gas temperature could significantly decrease with improving the EGR rate,and the exhaust gas temperature at 2500 r/min was clearly higher than that at 1850 r/min.The nucleation mode particles increased clearly,the accumulation mode particle number decreased gradually with the increase of EGR rate,and the typical particle size of nucleation mode particle was in the range of 10–25 nm.
ZHAO LiFengYU XiuMinQIAN DingChaoDONG WeiSUN PingHE LingYANG Song