A 100 mm diameter cup-shaped inert anode for aluminum electrolysis consisting of cermet 17Ni/83(10NiO-90NiFe2O4) was prepared and the operating performance was evaluated in a laboratory cell with the electrolyte CR2.3 and Al2O3 concentration 7.43% (mass fraction). The results indicate that no major operational difficulties are encountered during the testing which lasts for 101.5 h and the inert anode exhibits good general performances. The steady-state average concentration of impurity Ni in the bath is close to the solubility, however, the Fe concentration is lower than its solubility. The contents of the main contaminants for aluminum produced are Ni 0.128 8%, Fe 1.007 4%. The corrosion rate of inert anode under electrolysis conditions based on the content of impurity Ni in metal aluminum is approximately 8.51 mm/a.
Based on the FEA software ANSYS,a model was developed to simulate the thermal stress distribution of inert anode.In order to reduce its thermal stress,the effect of some parameters on thermal stress distribution was investigated,including the temperature of electrolyte,the current,the anode cathode distance,the anode immersion depth,the surrounding temperature and the convection coefficient between anode and circumstance.The results show that there exists a large axial tensile stress near the tangent interface between the anode and bath,which is the major cause of anode breaking.Increasing the temperature of electrolyte or the anode immersion depth will deteriorate the stress distribution of inert anode.When the bath temperature increases from 750 to 970 ℃,the maximal value and absolute minimal value of the 1st principal stress increase by 29.7% and 29.6%,respectively.When the anode immersion depth is changed from 1 to 10 cm,the maximal value and absolute minimal value of the 1st principal stress increase by 52.1% and 65.0%,respectively.The effects of other parameters on stress distribution are not significant.
Ni coating and Ni-Co alloy coatings were produced by adjusting the composition of the plating solution using a direct current electrodepositing process. The oxidation behaviors of nickel and nickel-cobalt alloys in air at 960 ℃ were studied by thermogravimetric (TG) analyzer and then the formed oxide scales were examined by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffractometry (XRD), and Raman spectroscopy. The scale morphologies, composition, grain size and mechanism of oxidation were discussed in detail. The results show that oxidation rates ofNi, Ni-7%Co (mass fraction) and Ni-15%Co generally follow parabolic relationship, whereas that of Ni-30% Co alloy follows cubic relationship. The higher the Co content of the alloys is, the faster the oxidation rate is. Metal concentration profiles reveal cobalt depletion in the alloy surface beneath oxide scales, and a progressive'enrichment in cobalt towards the outer surface of the scale.
Ball mixing and electroless plating were respectively used as the adding methods of metallic phase to prepare Ni/(90NiFe2O4-10NiO) cermets for the inert anode in aluminum electrolysis. The microstructure and thermal shock resistance of cermet samples were studied. The results show that, for the samples prepared by ball mixing method, aggregation of metallic phase is found in either the green blocks or sintered samples and the extent of aggregation increases with the increase of metal content. For 6.5Ni/(90NiFe2O4-10NiO) cermets prepared with electroless plating method, the homogeneous and fine metallic particles are found in either the green compacts or sintered samples, but the relative density and thermal shock residual strength decrease by 3% and 28%-58% respectively, compared with samples prepared with ball mixing method.
Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress, the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated, the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters.