您的位置: 专家智库 > >

国家自然科学基金(11174034)

作品数:5 被引量:6H指数:2
相关作者:狄增如吕彬彬叶纬明赵琛张朝阳更多>>
相关机构:北京师范大学北京有色金属研究总院更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学生物学自动化与计算机技术更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 3篇理学
  • 2篇生物学
  • 1篇自动化与计算...

主题

  • 2篇调控网络
  • 2篇振荡
  • 2篇基因
  • 2篇基因调控
  • 2篇基因调控网络
  • 2篇COMPLE...
  • 1篇周期振荡
  • 1篇混沌
  • 1篇负反馈
  • 1篇斑图
  • 1篇PAT
  • 1篇PATTER...
  • 1篇PHASE_...
  • 1篇PHASE_...
  • 1篇RELATI...
  • 1篇SMALL-...
  • 1篇TOPOLO...
  • 1篇TTR
  • 1篇ATTRAC...
  • 1篇COUPLI...

机构

  • 2篇北京师范大学
  • 1篇北京有色金属...

作者

  • 1篇赵琛
  • 1篇郑志刚
  • 1篇叶纬明
  • 1篇吕彬彬
  • 1篇狄增如
  • 1篇胡岗
  • 1篇黄旭辉
  • 1篇张朝阳

传媒

  • 3篇Chines...
  • 1篇物理学报
  • 1篇中国科学:物...

年份

  • 4篇2014
  • 1篇2013
5 条 记 录,以下是 1-5
排序方式:
Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks被引量:1
2014年
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
黄旭辉胡岗
Network dynamics and its relationships to topology and coupling structure in excitable complex networks被引量:3
2014年
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.
张立升谷伟凤胡岗弭元元
少节点基因调控网络的控制被引量:2
2013年
近年来,自组织振荡网络受到越来越多科学家的关注,对生物体的生长、发育起调控作用的基因调控网络即是其中的一种.本文研究了少节点基因调控网络的控制问题.运用多相位超前驱动方法对该种网络进行调控,可以有效地提高对网络的控制效率.通过数值模拟,发现对于少节点基因调控网络,当系统参数确定时,网络的有效控制率可以达到95%以上(10节点网络);当系统参数不确定时,控制的效率也非常高.
叶纬明吕彬彬赵琛狄增如
关键词:基因调控网络
Attractive target wave patterns in complex networks consisting of excitable nodes
2014年
This review describes the investigations of oscillatory complex networks consisting of excitable nodes, focusing on the target wave patterns or say the target wave attractors. A method of dominant phase advanced driving (DPAD) is introduced to reveal the dynamic structures in the networks supporting osciUations, such as the oscillation sources and the main excitation propagation paths from the sources to the whole networks. The target center nodes and their drivers are regarded as the key nodes which can completely determine the corresponding target wave patterns. Therefore, the center (say node A) and its driver (say node B) of a target wave can be used as a label, (A, B), of the given target pattern. The label can give a clue to conveniently retrieve, suppress, and control the target waves. Statistical investigations, both theoretically from the label analysis and numerically from direct simulations of network dynamics, show that there exist huge numbers of target wave attractors in excitable complex networks if the system size is large, and all these attractors can be labeled and easily controlled based on the information given by the labels. The possible applications of the physical ideas and the mathematical methods about multiplicity and labelability of attractors to memory problems of neural networks are briefly discussed.
张立升廖旭红弥元元钱郁胡岗
由基因调控网络数据分析揭示振荡斑图的功能结构
2014年
自然和社会系统的许多实际问题都可以用复杂网络动力学来描述,特别是生物网络和社会网络的应用最为广泛.人们已经积累了各种网络行为的大量数据,如何提出合理的物理思想和有效的数学方法来分析这些数据、从中提取有用的信息;从这些信息出发,理解在许多实际过程中由复杂的网络拓扑结构产生的简单动力学关系,并辨识支持各种网络动力学行为的自组织结构,是一个重要的课题.本文综述了其中一种研究方法.以生物学基因调控网络(Gene Regulatory Network,GRN)为研究对象,提出了一种功能权重(Functional Weight,FW)计算方法.通过FW方法定量计算在GRN的振荡动力学中不同调控作用(称为作用边)的重要性.进一步研究发现在各种GRN中这种FW的分布普遍极不均匀,绝大部分作用边具有很小权重(弱作用边),只有少数边具有大的权重(强作用边).而这些强作用边构成的子网络比原网络简单得不可比拟,但它们揭示了网络节点之间的相互作用关系并控制着整个网络的动力学行为.由这些强作用边构成的网络,我们可以辨识GRN的功能骨架和振荡核心子网络.振荡核心起到网络振荡源的作用,而振荡骨架则成为网络中信号传播的主要路径.FW方法可以广泛应用到不同尺寸、不同调控规则(AND,OR等形式)和不同动力学行为(周期振荡、混沌动力学和暂态过程)的GRNs,并且由FW分析出发我们可以对GRN动力学进行有效调控.
张朝阳黄旭辉郑志刚胡岗
关键词:基因调控网络周期振荡混沌
共1页<1>
聚类工具0