The metabolic pathway of phenanthrene-degrading strain Agrobacterium sp. Phx1 was investigated. Phx1 almost was able to transform 100 υg/mL of phenanthrene completely in 1 day in broth media of beef extract-peptone (BP), Luria-Bertani (LB) and mineral salts media (MS), and LB and BP could promote the growth and degradation efficiency of Phx1. The GC-MS was employed to analyze the metabolites of the 1st, 3rd, 7th days of phenanthrene degradation in MS. As a result, the 1-Hydroxy-2-naphthoic acid (1H2N) and 1-naphthol (NOL) were detected in the metabolites of the 1st day. Only NOL was observed on the 3rd day and it disappeared on the 7th day. The accumulated NOL did not pertain to the defined pathway of phenanthrene degradation by bacteria. The further HPLC study confirmed the finding in GC-MS analysis and found the production of catechol (CAT) from o-phthalic acid (OPA) in the phenanthrene metabolizing, which has never been reported in the defined degrading pathways. This production was also evidenced by the production of CAT using OPA as substrate. All of our results showed that the Agrobacterium sp. Phx1 had a novel phenanthrene-degrading pathway.
ZHANG Lei, YUAN Hongli, WANG Shuangqing & HUANG Huaizeng College of Biological Sciences, Key Laboratory of Agro-Microbial Resource and Application, Ministry of Agriculture, China Agricultural University, Beijing 100094, China
In this study, DNAs were extracted from sediment samples at depths of 5, 35, and 69 cm from eutrophic Guanting reservoir, China. 16S rDNAs were amplified by PCR and clone libraries were constructed. The depth-related distribution of bacterial community in the sediment was characterized by using amplified 16S rDNA restriction analysis (ARDRA) and sequencing of the dominant clones. The results indicated that species diversity in the sediment of Guanting reservoir was rather high with the Shannon-Wiener index about 5.8. Bacterial richness varied in different depths: the highest in the sample of 35 cm in depth; followed by the sample of 5 cm in depth; and the lowest bacterial richness in the sample of 69 cm. Dominant species from the three samples were different although there were some common clones. Phylogenetic analysis showed that all of the dominant clones in the three layers were uncultured bacteria and distantly related to the previously reported species in beta or gamma subclass of proteobacteria, including bacterial groups that have the ability to degrade aromatic hydrocarbons, n-alkanes, chlorinated organic compounds, or to accumulate polyphosphate, etc. Changes of depth-related bacterial community in the Guanting reservoir sediment might reflect the pollution history and the water quality of the reservoir. In addition, the cloned sequences from the Guanting reservoir sediment were all different from the presently reported ones, indicating that there were some particular bacteria in that environment.
QU Jianhang, YUAN Hongli, HUANG Huaizeng & WANG Entao College of Biological Sciences, Key.Laboratory of Agro-Microbial Resource and Application, Ministry of Agriculture, China Agricultural University, Beijing 100094, China