Rapid electron transfer from electron adduct and reducing OH adduct of 2-deoxyadenosine-5′-monophosphate acid (dAMP) to riboflavin (RF) and flavin adenine dinucleotide (FAD) was studied using the time-resolved pulse radiolysis techniques. Both spectroscope and kinetic analyses showed that transient absorption spectrum of electron adduct or OH adduct of dAMP formed at first, and men changed to that of radical anion of RF or FAD after several microseconds of pulse. The evidence indicated that electron transfer from electron adduct and reducing OH adduct of dAMP to RF or FAD did occur. From buildup or bleaching kinetics of radical anions of RF and FAD, the rate constants for electron transfer were determined, respectively.
Pheophorbide a (PPa), a decomposition product of chlorophyll a, is a photosensitizer. The photosensiti-zation mechanisms (Type Ⅰ and Type Ⅱ) of PPa in simple buffer solutions and in buffer solutions containing double-layered DPPC liposomes have been studied using techniques of ESR, spin-trapping, spin-counteraction and laser flash photolysis . The results showed that adding DPPC liposomes to the buffer solution caused an increase of efficiency of generating 1O2 and PPa - by photoactivating PPa. The increase could be ascribed to the disaggregation of hydrophobic PPa caused by the addition of liposomes and the protective effect of liposomal media on the triplet state of PPa. It is concluded that the photosensitization of PPa in liposomal systems is different from that in simple aqueous solutions, and shows higher efficacy. The results will be useful to elucidating the mechanisms of photodynamic therapy of cancer.
Riboflavin, suggested to be a radiosensitizer, was studied in murine thymocytes and human hepatoma L02 cell line in vitro with MTT method and fluorescence microscopy. When the murine thymocytes treated with 5-400 μmol/L riboflavin were irradiated by 5 Gy 60Co γ ionizing radiation, the low concentration groups, i.e. treated with 5-50 μmol/L riboflavin, showed a different surviving fractions-time relating correlation compared with the high concentration groups, i.e. treated with 100-400 μmol/L riboflavin. The former had a high survival level at the end of irradiation, but which, after 4-h incubation, decreased rapidly to a low level. On the contrary, the high concentration groups showed a low survival level at the end of irradiation, and a poor correlation was found between the surviving fraction and the incubation time, after 4 h a little difference was observed. The results of fluorescence microscopy indicated that under low concentration conditions, the riboflavin localized mainly in nucleus (both perinuclear area and inside of nuclear membrane), while under high concentration conditions, intensive riboflavin also localized around cytoplasmic membranes. Thus we can conclude: the riboflavin had radiosensitivity effect on DNA under low concentration conditions, and enhanced the damage to cytoplasmic membrane under high concentration conditions. Also the most effective concentration of riboflavin can be evaluated to be approximate 100 μmol/L.