Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
The influence of polarization-induced electric fields on the electron distribution and the optical properties of intersubband transitions (ISBT) in AlxGa(1-x)N/GaN coupled double quantum wells (DQWs) is investigated by self-consistent calculation. It is found that the polarization-induced potential drop leads to an asymmetric potential profile of AlxGa(1-x)N/GaN DQWs even though the two wells have the same width and depth. The polarization effects result in a very large Stark shift between the odd and even order subbands,thus shortening the wavelength of the ISBT between the first odd order and the second even order (1odd-2 ) subbands. Meanwhile, the electron distribution becomes asymmetric due to the polarization effects, and the absorption coefficient of the 1odd-2 ISBT decreases with increasing polarization field discontinuity.