The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction.The results show that there are deformation twins and some un-tangled discrete dislocations at low strains.When the strain is increased to 0.58,a lot of high density dislocation walls and microbands come into being.At the same time,some twins lose the twinning relationship of 60°<111>.At a strain of 0.94,both dislocation boundaries and twin boundaries will rotate to the axis direction of wires and the shear bands start to appear.When the strain is higher than 1.96,most of the boundaries are parallel to the drawn direction.Texture analysis indicates that with the strain increasing,the volume fraction of complex texture component decreases,but<111>and<100>texture components increase.However,the variation in the volume fraction of each texture component as strains is not evident when the strains are higher than 0.58.For polycrystalline Ag with low stacking fault energy,complex texture components are easily formed.
The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain.
Xiao-guang MAJian CHENYang YANGLei LIZheng CHENWen YAN
The drawn copper wires have been analyzed by differential scanning calorimeter(DSC) and a new method, which uses DSC measurements to determine the Johnson-Mehl-Avrami-Kolmogorov(JMAK) exponent via introducing Arrhenius behavior and modifying the baseline of DSC curves, has been proposed. The results show that JMAK exponent and recrystallization activation energy of the drawn copper wires with a strain of 2.77 are about 2.39 and 125 k J/mol, respectively. The line linking the tangency points of DSC curve hypotenuse can be used as the baseline when calculating recrystallization fraction. The JMAK exponent obtained by the DSC method is in a good agreement with that obtained by microhardness measurements. Compared to traditional methods to measure the exponent, the proposed method is faster and less labor intensive.