P2P systems are categorized into tree-based and mesh-based systems according to their topologies. Mesh-based systems are considered more suitable for large-scale lnternet applications, but require optimization on latency issue. This paper proposes a content subscribing mechanism (CSM) to eliminate unnecessary time delays during data relaying. A node can send content data to its neighbors as soon as it receives the data segment. No additional time is taken during the interactive stages prior to data segment transmission of streaming content. CSM consists of three steps. First, every node records its historical segments latency, and adopts gamma distribution, which possesses powerful expression ability, to express latency statistics. Second, a node predicts subscribing success ratio of every neighbor by comparing the gamma distribution parameters of the node and its neighbors before selecting a neighbor node to subscribe a data segment. The above steps would not increase latency as they are executed before the data segments are ready at the neighbor nodes. Finally, the node, which was subscribed to, sends the subscribed data segment to the subscriber immediately when it has the data segment. Experiments show that CSM significantly reduces the content data transmission latency.
Images with human faces comprise an essential part in the imaging realm. Occlusion or damage in facial portions will bring a remarkable discomfort and information loss. We propose an algorithm that can repair occluded or damaged facial images automatically, named ‘facial image inpainting'. Inpainting is a set of image processing methods to recover missing image portions. We extend the image inpainting methods by introducing facial domain knowledge. With the support of a face database, our approach propagates structural information, i.e., feature points and edge maps, from similar faces to the missing facial regions. Using the interred structural information as guidance, an exemplar-based image inpainting algorithm is employed to copy patches in the same face from the source portion to the missing portion. This newly proposed concept of facial image inpainting outperforms the traditional inpainting methods by propagating the facial shapes from a face database, and avoids the problem of variations in imaging conditions from different images by inferring colors and textures from the same face image. Our system produces seamless faces that are hardly seen drawbacks.
Yue-ting ZHUANGYu-shun WANGTimothy K. SHIHNick C. TANG
As historical Chinese calligraphy works are being digitized, the problem of retrieval becomes a new challenge. But, currently no OCR technique can convert calligraphy character images into text, nor can the existing Handwriting Character Recognition approach does not work for it. This paper proposes a novel approach to efficiently retrieving Chinese calligraphy characters on the basis of similarity: calligraphy character image is represented by a collection of discriminative features, and high retrieval speed with reasonable effectiveness is achieved. First, calligraphy characters that have no possibility similar to the query are filtered out step by step by comparing the character complexity, stroke density and stroke protrusion. Then, similar calligraphy characters axe retrieved and ranked according to their matching cost produced by approximate shape match. In order to speed up the retrieval, we employed high dimensional data structure - PK-tree. Finally, the efficiency of the algorithm is demonstrated by a preliminary experiment with 3012 calligraphy character images.
Along with the development of motion capture technique, more and more 3D motion databases become available. In this paper, a novel approach is presented for motion recognition and retrieval based on ensemble HMM (hidden Markov model) learning. Due to the high dimensionality of motion’s features, Isomap nonlinear dimension reduction is used for training data of ensemble HMM learning. For handling new motion data, Isomap is generalized based on the estimation of underlying eigen- functions. Then each action class is learned with one HMM. Since ensemble learning can effectively enhance supervised learning, ensembles of weak HMM learners are built. Experiment results showed that the approaches are effective for motion data recog- nition and retrieval.
In this paper, we propose a highly automatic approach for 3D photorealistic face reconstruction from a single frontal image. The key point of our work is the implementation of adaptive manifold learning approach. Beforehand, an active appearance model (AAM) is trained for automatic feature extraction and adaptive locally linear embedding (ALLE) algorithm is utilized to reduce the dimensionality of the 3D database. Then, given an input frontal face image, the corresponding weights between 3D samples and the image are synthesized adaptively according to the AAM selected facial features. Finally, geometry reconstruction is achieved by linear weighted combination of adaptively selected samples. Radial basis function (RBF) is adopted to map facial texture from the frontal image to the reconstructed face geometry. The texture of invisible regions between the face and the ears is interpolated by sampling from the frontal image. This approach has several advantages: (1) Only a single frontal face image is needed for highly automatic face reconstruction; (2) Compared with former works, our reconstruction approach provides higher accuracy; (3) Constraint based RBF texture mapping provides natural appearance for reconstructed face.
The paper proposes a novel symmetrical encoding-based index structure, which is called EDD-tree (for encoding-based dual distance tree), to support fast k-nearest neighbor (k-NN) search in high-dimensional spaces. In the EDD-tree, all data points are first grouped into clusters by a k-means clustering algorithm. Then the uniform ID number of each data point is obtained by a dual-distance-driven encoding scheme, in which each cluster sphere is partitioned twice according to the dual distances of start- and centroid-distance. Finally, the uniform ID number and the centroid-distance of each data point are combined to get a uniform index key, the latter is then indexed through a partition-based B^+-tree. Thus, given a query point, its k-NN search in high-dimensional spaces can be transformed into search in a single dimensional space with the aid of the EDD-tree index. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of our proposed scheme, and the results demonstrate that this method outperforms the state-of-the-art high-dimensional search techniques such as the X-tree, VA-file, iDistance and NB-tree, especially when the query radius is not very large.