Aimed at the poor performance of conventional geophones in exploration for deeper and complex targets, we present the principle and theoretical design of a new geophone based on the optical fiber Bragg grating (FBG) sensing technology. The important parameters such as response functions are calculated theoretically. Because of the advantages of FBG sensing technology, the new FBG geophone has a high dynamic range of 94dB at (10-200 Hz). This new generation of geophones will have wide use in seismic prospecting due to its higher sensitivity, lighter weight, and lower cost.
Borehole acoustic reflection logging can provide high resolution images of nearborehole geological structure. However, the conventional seismic migration and imaging methods are not effective because the reflected waves are interfered with the dominant borehole-guided modes and there are only eight receiving channels per shot available for stacking. In this paper, we apply an equivalent offset migration method based on wave scattering theory to process the acoustic reflection imaging log data from both numerical modeling and recorded field data. The result shows that, compared with the routine post-stack depth migration method, the equivalent offset migration method results in higher stack fold and is more effective for near-borehole structural imaging with low SNR acoustic reflection log data.
It is desirable to develop new signal processing techniques for effectively extracting reflected waves under the strong interferences of borehole guided waves. We presented a multi-scale semblance method for the separation and velocity (slowness) analysis of the reflected waves and guided waves in borehole acoustic logging. It was specially designed for the newly developed tools with ultra-long source- receiver spacing for acoustic reflection survey. This new method was a combination of the dual tree com- plex wavelets transform (DT-CWT) and the slowness travel time coherence (STC) method. Applications to the 3D finite difference (FD) modeling simulated data and to the field array sonic waveform signals have demonstrated the ability of this method to appropriately extract the reflected waves under severe interference from the guided waves and to suppress noise in the time-frequency domain.