In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application.
Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportions, which corresponds to three different uniaxial compressive strengths. The cubic specimens with size of 100 mm for each edge were tested with servo-hydraulic actuators at different stress ratios. The principal stresses and strains of the specimens were recorded, and the failure of the cubic specimens under various stress states was examined. The experimental results indicated that the stress states and stress ratios had significant influence on the strength and deformation of HPC under biaxial and triaxial compression, especially under triaxial compression. Failure criteria were proposed for the HPC specimens under biaxial and triaxial compressive loading. The test results provided a valuable reference for obtaining multi-axial constitutive law for HPC.
ZHOU Jia JiaPAN Jin LongLEUNG Christopher Kin YingLI Zong Jin
In order to investigate the flexural behaviors of engineered cementitious composites (ECC), theoretical and experimental researches are done on flexural doublereinforced ECC beams. Based on the assumption of the plane section remaining plane in bending and simplified constitutive models of materials, the calculation methods of load carrying capacities for different critical stages are obtained. Then, these calculation methods are demonstrated by comparing the test results with the calculation results. Finally, based on the proposed theoretical formulae, the effects of the compression strength, compression strain and tension strength of ECC, and the reinforcement ratio on the flexural behaviors of double-reinforced ECC beams are analyzed. The calculated and measured results are in good agreement, which indicates that the theoretical model can be used to predict the momentcurvature response of steel reinforced ECC beams. And the results of parametric studies show that the increase in the compression strength of ECC can greatly improve the flexural performance of beams; the increase in the ultimate compression strain can significantly improve the ultimate curvature and ductility, but has little effect on the load bearing capacity of beams. little effect on the flexural The tensile strength of ECC has behaviors of ECC beams. The increase in the steel reinforcement ratio can lead to significant improvement of the load bearing capacity and the stiffness of beams, but a degradation of the ductility of beams. The theoretical model and parameter analysis results in this paper are instructive for the design of steel reinforced ECC beams.
Fiber reinforced cementitious composites(ECC) are a class of advanced composites with strain hardening and multiple cracking behaviors. Substitution of concrete with ECC can significantly improve the seismic resistance and durability of the infrastructures. In this paper, it is proposed to use ECC as the matrix of frame columns for improving its load carrying capacity, ductility, and avoiding the brittleness of concrete. Based on the assumption of plane remaining plane and constitutive models of materials, theoretical models for calculating the load-carrying capacity of the steel reinforced ECC columns under small and large eccentric compression are proposed. With the parameters of the constitutive models from the existing experimental data, the relationship between ultimate axial load and moment capacities is also derived with the proposed models. To verify the validity of the proposed theoretical models, finite element analysis with the software of ATENA is conducted to simulate the mechanical behavior of the steel reinforced ECC columns under eccentric compressive loading. The calculation results from the theoretical models show good consistency with the simulated results, indicating that the proposed models are feasible and reliable for design. Finally, based on the theoretical models, the effect of the ultimate tensile strain and compressive strength of ECC, longitudinal reinforcement ratio on the load carrying capacity of the steel reinforced ECC column are comprehensively studied.
Experimental investigation was conducted to characterize the responses of pseudo-ductile cementitious composites (PDCCs) when subjected to uniaxial and biaxial compression.The PDCCs is a class of fiber reinforced cementitious composites with ultra-high ductility by using a low volume fraction (2%) of polyvinyl alcohol (PVA) fiber.Two different strength grades of PDCC were examined with cubic specimen size of 100 mm in the tests.The specimens were loaded with a servo-hydraulic jack at different stress ratios.The principle stresses and strains of the specimens were recorded,and the failure modes with various stress states were examined.The test results indicated that the ultimate strength of PDCCs increased due to the lateral confinement in the other principal stress direction,and the maximum ultimate strength occurred at the biaxial stress ratio of 0.25,which was very different from common concrete material.For the PDCC specimens,the biaxial strength may be lower than the uniaxial strength when subjected to biaxial compression with the stress ratio of 1.0,and the failure mode showed a shear-type failure because of the bridging effect of fibers.Finally,a failure criterion was proposed for PDCCs under biaxial compression.
ZHOU JiaJiaPAN JinLongLEUNG Christopher Kin YingLI ZongJin
Engineered cementitious composite(ECC)is a class of high performance cementitious composites with pseudo strain-hardening behavior and excellent crack control capacity.Substitution of concrete with ECC can largely reduce the cracking and durability problems associated with brittleness of concrete.In this paper,a simplified constitutive model of the ECC material was applied to simulate the flexural behaviors of the steel reinforced ECC and ECC/concrete composite beams with finite element method.The simulation results are found to be in good agreement with test results,indicating that the finite element model is reasonably accurate in simulating the flexural behaviors of the steel reinforced ECC flexural members.The effects of the ECC modulus,ECC tensile ductility,ECC thickness and ECC position on flexural behaviors in terms of ultimate moment,deflection and the maximum crack width of the steel reinforced ECC or ECC/concrete composite beam are hence evaluated.