动态社团发现是研究网络演化的关键步骤。在数据量迅猛增长的情况下,社团发现的单机算法效率较低。该文提出了一种基于Spark的并行增量动态社团发现算法(parallel incremental dynamic community detection algorithm based on Spark,PIDCDS),为了在GraphX并行图计算平台上通过最大化持久力发现社团,该算法对节点的持久力计算公式进行了有效修正。PIDCDS计算每个时间片中增量节点的持久力指标,更新其社团归属,在保证一定的社团划分准确性的基础上减少计算量。通过与FacetNet动态社团发现算法做比较,该算法能够获得更好的稳定性,同时能发现更真实的社团划分。对比不同规模网络在PIDCDS上的运行时间,发现该时间随着网络节点和边数的增加缓慢增长,性能较高,并且增加执行器核数将在一定程度上加速算法的执行。
随着计算机网络的迅猛发展和大数据时代的到来,数据越来越频繁地呈现出多属性异构的特点.这种包含多种不同类型属性的大数据流称为异构大数据流(Heterogeneous Big Data Streams).在面向大规模数据在线监测分析的应用中,通常需要在异构大数据流上注册大规模监测规则.因此,对于每一个数据流元组,必须用最小的计算开销满足所有的规则.同时,由于大数据流上监测规则集异常庞大,提高规则监测的性能是大规模数据流在线监测的关键.基于此,该文提出一种层次化的索引结构H-Tree及其在线规则匹配算法.具体的,H-Tree将大数据流上的属性集划分为离散型属性和连续型属性.基于不同的属性集,构建两层索引结构:在第1层,通过改进的红黑树对离散型谓词构建触发索引;在第2层,通过量化连续型谓词构建多维索引结构.H-Tree的在线规则匹配算法利用关联关系表对两层索引的监测结果进行融合过滤.实验分析表明,与经典的R+方法相比较,H-Tree通过层次化的索引结构,在不降低准确度的前提下,显著提升了大数据流的监测效率.