Objective To study the effects of cadmium on hepatocellular DNA damage, expression of proto-oncogenes c-myc, c-fos, and c-jun as well as apoptosis in rats. Methods Cadmium chloride at the doses of 5, 10, and 20 μmol/kg was given to rats by i.p. and there were 5 male SD rats in each group. Hepatocellular DNA damage was measured by single cell gel electrophoresis (or comet assay), while expression of proto-oncogenes c-myc, c-fos, and c-jun in rat hepatocytes were measured by Northern dot hybridization. C-Myc, c-Fos, and c-Jun were detected with immuno-histochemical method. Hepatocellular apoptosis was determined by TUNEL (TdT-mediated dUTP Nick End Labelling) and flow cytometry. Results At the doses of 5, 10, and 20 μmol/kg, cadmium chloride induced DNA damage in rat hepatocytes and the rates of comet cells were 50.20%, 88.40%, and 93.80%, respectively. Results also showed an obvious dose-response relationship between the rates of comet cells and the dose of cadmium chloride (r=0.9172, P〈0.01). Cadmium chloride at the doses of 5, 10, and 20 μmol/kg induced expression of proto-oncogenes c-myc, c-fos, and c-jun. The positive brown-yellow signal for c-myc, c-fos, and c-jun was mainly located in the cytoplasm of hepatocytes with immunohistochemical method. TUNEL-positive cells were detected in cadmium-treated rat livers. Apoptotic rates (%) of cadmium-treated liver cells at the doses of 5, 10, and 20 μmol/kg were (17.24 ±2.98), (20.58± 1.35), and (24.06±1.77) respectively, being significantly higher than those in the control. The results also displayed an obvious dose-response relationship between apoptotic rates and the dose of cadmium chloride (r=0.8619, P〈0.05). Conclusion Cadmium at 5-20 μmol/kg can induce hepatocellular DNA damage, expression of proto-oncogenes c-myc, c-fos, and c-jun as well as apoptosis in rats.
Objective To investigate the effects of sodium selenite on telomerase activity, apoptosis and expression of TERT, c-myc and p53 in rat hepatocytes. Methods Selenium at doses of 2.5, 5.0, and 10 μmol/kg was given to SD rats by garage. In rat hepatocytes, telomerase activity was measured by the telomeric repeat amplification protocol (TRAP), apoptosis was detected by flow cytometry, and expressions of telomerase reverse transcriptase (TERT), c-myc and p53 were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). c-Myc and P53 proteins were detected by immunochemistry. Results Selenium at doses of 2.5, 5.0, and 10 μmol/kg significantly increased hepatocellular telomerase activity and induced apoptosis in a dose-dependent manner. Although selenium at doses of 2.5, 5.0, and 10 μmol/kg displayed no obvious enhancing effect on the TERT mRNA expression in rat hepatocytes (P〉0.05), it significantly increased the c-myc mRNA and p53 mRNA expression at the dose of 10 μmol/kg (P〈0.05). Selenium at doses of 5.0 and 10 μmol/kg obviously increased the content of P53 protein in rat hepatocytes, but only at the dose of 10 μmol/kg, it significantly promoted the value of c-Myc protein in them. Conclusion Selenium can slightly increase telomerase activity and TERT expression, and significantly induce apoptosis and over-expression of c-myc and p53 at relatively high doses. The beneficial effects of selenium on senescence and aging may be mediated by telomerase activation and expression of TERT, c-myc, and p53 in rat hepatocytes.
Objective To study the effects of selenium on DNA damage, apoptosis and c-myc, c-fos, and c-jun expression in rat hepatocytes. Methods Sodium selenite at the doses of 5, 10, and 20 μmol/kg was given to rats by i.p. and there were 5 male SD rats in each group. Hepatocellular DNA damage was detected by single cell gel electrophoresis (or comet assay). Hepatocellular apoptosis was determined by TUNEL (TdT-mediated dUTP nick end labelling) and flow cytometry. C-myc, c-fos, and c-jun expression in rat bepatocytes were assayed by Northern dot hybridization. C-myc, c-fos, and c-jun protein were detected by immunohistochemical method. Results At the doses of 5, 10, and 20μmol/kg, DNA damage was induced by sodium selenite in rat hepatocytes and the rates of comet cells were 34.40%, 74.80%, and 91.40% respectively. Results also showed an obvious dose-response relationship between the rates of comet cells and the doses of sodium selenite (r=0.9501, P〈0.01). Sodium selenite at the doses of 5, 10, and 20μmol/kg caused c-myc, c-fos, and c-jun overexpression obviously. The positive brown-yellow signal for proteins of c-myc, c-fos, and c-jun was mainly located in the cytoplasm of bepatocytes with immunohistocbemical method. TUNEL-positive cells were detected in selenium-treated rat livers. Apoptotic rates (%) of selenium-treated liver cells at the doses of 5, 10, and 20 μmol/kg were (3.72±1.76), (5.82±1.42), and (11.76±1.87) respectively, being much higher than those in the control. Besides an obvious dose-response relationship between apoptotic rates and the doses of sodium selenite (r=0.9897, P〈0.01), these results displayed a close relationship between DNA damage rates and apoptotic rates, and the relative coefficient was 0.9021, P〈0.01. Conclusion Selenium at 5-20μmol/kg can induce DNA damage, apoptosis, and overexpression of c-myc, c-fos, and c-jun in rat hepatocytes.