We derive a new multisymplectic integrator for the Kawahara-type equation which is a fully explicit scheme and thus needs less computation cost. Multisympecticity of such scheme guarantees the long-time numerical behaviors. Nu- merical experiments are presented to verify the accuracy of this scheme as well as the excellent performance on invariant preservation for three kinds of Kawahara-type equations.
In this paper,we propose an explicit symplectic Fourier pseudospectral method for solving the Klein-Gordon-Schr odinger equation.The key idea is to rewrite the equation as an infinite-dimensional Hamiltonian system and discrete the system by using Fourier pseudospectral method in space and symplectic Euler method in time.After composing two different symplectic Euler methods for the ODEs resulted from semi-discretization in space,we get a new explicit scheme for the target equation which is of second order in space and spectral accuracy in time.The canonical Hamiltonian form of the resulted ODEs is presented and the new derived scheme is proved strictly to be symplectic.The new scheme is totally explicitwhereas symplectic scheme are generally implicit or semi-implicit.Linear stability analysis is carried and a necessary Courant-Friedrichs-Lewy condition is given.The numerical results are reported to test the accuracy and efficiency of the proposed method in long-term computing.