An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.
Tilting pair was introduced by Miyashita in 2001 as a generalization of tilting module. In this paper, we construct a tilting left Endh(C)-right Endh(T)-bimodule for a given tilting pairs (C,T) in modh, where A is an Artin algebra.
The commuting graph of an arbitrary ring R, denoted by Г(R), is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the connectivity and the diameter of Г(ZnS3). We show that Г(ZnS3) is connected if and only if n is not a prime number. If Г(ZnS3) is connected then diam(Г(ZnS3)) = 3, while ifГ(ZnS3) is disconnected then every connected component of Г(ZnS3) must be a complete graph with same size, and we completely determine the vertice set of every connected component.
A module is called a co-*∞-module if it is co-selfsmall and ∞-quasi-injective. The properties and characterizations are investigated. When a module U is a co-*∞-module, the functor Hom RU(-,U)is exact in Copres∞(U). A module U is a co-*∞-module if and only if U is co-selfsmall and for any exact sequence 0→M→UI→N→0 with M∈Copres∞(U) and I is a set, N∈Copres∞(U) is equivalent to Ext1R(N,U)→Ext1R(UI,U) is a monomorphism if and only if U is co-selfsmall and for any exact sequence 0→L→M→N→0 with L, N∈Copres∞(U), N∈Copres∞(U) is equivalent to the induced sequence 0→Δ(N)→Δ(M)→Δ(L)→0 which is exact if and only if U induces a duality ΔUS:⊥USCopres∞(U):ΔRU. Moreover, U is a co-*n-module if and only if U is a co-*∞-module and Copres∞(U)=Copresn(U).
A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of (D(7), D(C) ) being an n-tilting pair over an Artin algebra for an n-tilting pair ( C, 7) is given. And, a necessary and sufficient condition of ( T^*, C^* ) being an ntilting pair over a selfinjective Artin algebra for an n-tilting pair (C, 7) is also given.
A ring R is called linearly McCoy if whenever linear polynomials f(x), g(x) e R[x]/{0) satisfy f(x)g(x) : O, then there exist nonzero elements r, s ∈ R such that f(x)r : sg(x) =0. For a ring endomorphism α, we introduced the notion of α-skew linearly McCoy rings by considering the polynomials in the skew polynomial ring R[x; α] in place of the ring R[x]. A number of properties of this generalization are established and extension properties of α-skew linearly McCoy rings are given.
An R-module M is called Gorenstein FP-injective if there is an exact sequence …→E1→E0→E^0→E^1→… of FP-injective R-modules with M=ker(E^0→E^1) and such that Hom(E,-) leaves the sequence exact whenever E is an FP-injective R-module.Some properties of Gorenstein FP-injective are obtained.Moreover,it is proved that a ring is left Noetherian if and only if every Gorenstein FP-injective left R-module is Gorenstein injective.Furthermore,it is shown that over an n-FC and perfect ring R,a left R-module M is Gorenstein FP-injective if and only if MFH for some FP-injective left R-module F and some strongly Gorenstein FP-injective R-module H.In view of this,Gorenstein FP-injective precovers and Gorenstein FP-injective preenvelopes are considered.