[Objective] This study aimed to improve density and practicality of the ge- netic map of sunflower (Helianthus annuus L.) by adding some SSR markers. [Method] A total of 123 F8 RILs populations derived from a cross between PAC-2 and RHA-266 were selected as the materials, and a total of 300 pairs of SSR primers were used to screen polymorphic markers between the parents and some of their RILs, and finally 51 pairs of the primers producing polymorphic patterns were selected to construct the genetic map of the RILs populations. [Result] Nineteen pairs of SSR primers did not generate polymorphic patterns or any bands, and 32 SSR pairs showed polymorphism. Thirty-five alleles which distributed in the 15 link- age groups of the maps were detected. The new map covered a total length of 2 914.5 cM, 7.5 cM longer than that of the original map. The average marker interval is 8.1 cM replacing original 9.0 cM. [Conclusion] This study provided reference for genetic map integration and molecular marker assisted selection of sunflower.
In order to investigate the possibility and efficiency of exogenous gene spread in nature and potential ecological risk of transgenic rice, as well as analyze the effect of exogenous Bt gene insertion on ecological fitness of transgenic rice plants, a experiment was carried out with three insect-resistant Bt transgenic rice cultivars Bt63, R1 and R2 and one conventional rice line 11-838 as experimental materials, the insect-resistant transgenic and non-transgenic rice plants were inter- cropped pair-wisely under high and low insect-infestation pressures, and the vegeta- tive growth, seed-setting and the resistance to rice stem borers were compared be- tween transgenic and non-transgenic lines. According to the experimental results, both the tiller number and fresh weight of Bt transgenic rice plants under low insect- infestation pressure showed no significant differences compared with the control, but the plant height, spike length and spike weight were all lower than those of non- transgenic rice plant, and Bt63 and R2 were significantly different compared with the control. On the contrary, under high insect-infestation pressure, the tiller number, spike length and spike weight of three Bt transgenic rice cultivars were significantly higher than those of the control, while the plant height showed different fitness ef- fects among various transgenic rice cultivars, which might be related to the charac- teristics of the receptive cultivars. The individual filled grain number and 1 000-grain weight of three transgenic rice cultivars showed no significant difference compared with the control under two different insect-infestation pressures, suggesting that the effect of exogenous Bt gene on seed setting was not significant. Under insect-infes- tation pressure, the resistance of three Bt transgenic rice cultivars against rice stem borer was significantly superior to non-transgenic rice, indicating that the effect of exogenous Bt gene on insect resistance of receptive plants was distinctly. Further- more, experimental