Functional human hepatocytes xenografted into the liver of mice can be used as a model system to study pharmacokinetics,infection of hepatitis viruses,and the efficacy of hepatitis vaccines.Significant levels of liver xeno-repopulation have been reported in Fah-/-Rag2-/-Il2rg-/-mice.However,the high mortality and low breeding rate of this model may hinder its application.A new model,termed Fah-/-Nod/Scid mice,which combines the advantages of liver repopulation in Fah-/-mice with the ease of xenotransplantation in Nod/Scid mice was obtained by gradual cross-breeding.Fah-/-Nod/Scid mice were easily maintained in breeding colonies and in adult animal care facilities.FK506 treatment combined with gradual withdrawal of NTBC before cell transplantation ensured that Fah-/-Nod/Scid mice were susceptible to liver xeno-repopulation by human hepatocytes;the proportion of engrafted human hepatocytes reached 33.6%.The function of the expanded human hepatocytes within the chimeric liver was confirmed by weight curve analysis,the expression of characteristic proteins,and the biochemical analysis of liver function.These results show that Fah-/-Nod/Scid mice are an ideal humanized liver mouse model with many useful applications.
Background Our previous studies have indicated that the beneficial effects of grafting neural stem cells (NSCs) overexpressing glial cell line-derived neurotrophic factor (GDNF) in rats after stroke. However, the underlying mechanisms are highly debatable. In this study, we investigated whether neurogenesis, Akt, and extracellular signal- regulated kinase 1/2 (Erkl/2) signaling were involved in this process. Methods Transient ischemic stroke were induced by occluding middle cerebral artery for 2 hours and reperfusion. At 3 days after reperfusion, GDNF/NSCs, NSCs, and vehicle were administered. Immunohistochemical staining was used to evaluate neurogenesis by nestin antibody; phosphorylation of Akt and Erkl/2 was investigated by Western blotting analysis. Results Transplantation of GDNF/NSCs and NSCs significantly increased nestin-positive cells compared to control group (vehicle) from 1 to 7 weeks after reperfusion, and GDNF/NSCs showed stronger effect than NSCs at 2 and 3 weeks after reperfusion. Meanwhile, enhanced phosphorylation level of Erkl/2 was observed in the GDNF/NSCs and NSCs groups compared with control group, and phosphorylation level of Erkl/2 in GDNF/NSCs group was remarkably higher than that of NSCs group at any given time. In contrast, expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), known as inhibitor of Erkl/2 signaling, was significantly decreased in the GDNF/NSCs and NSCs groups compared with the control group. Moreover, much enhanced and prolonged phosphorylation level of Akt of GDNF/NSCs group was detected compared with control and NSCs group. Conclusion Grafting GDNF/NSCs enhances neurogenesis and activates Akt and Erkl/2 signaling, that may provide the potential for GDNF/NSCs in stroke treatment.
Neuroplastin 65 (Np65) is an immunoglobulin superfamily cell adhesion molecule involved in synaptic formation and plasticity. Our recent study showed that Np65-knockout (KO) mice exhibit abnormal cognition and emotional disorders. However, the underlying mechanisms remain unclear. In this study, we found 588 differentially- expressed genes in Np65-KO mice by microarray analysis. RT-PCR analysis also revealed the altered expression of genes associated with development and synaptic structure, such as Cdhl, Htr3a, and Kcnj9. In addition, the expression of Wnt-3, a Wnt protein involved in development, was decreased in Np65-KO mice as evidenced by western blotting. Surprisingly, MRI and DAPI staining showed a significant reduction in the lateral ventricular volume of Np65-KO mice. Together, these findings suggest that ablation of Np65 influences gene expression, which may contribute to abnormal brain development. These results provide clues to the mechanisms underlying the altered brain functions of Np65-deficient mice.
Mesenchymal stem cells (MSCs) have great potential for treating various diseases, especially those related to tissue damage involving immune reactions. Various studies have demonstrated that MSCs are strongly immunosuppressive in vitro and in vivo. Our recent studies have shown that un-stimulated MSCs are indeed incapable of immunosuppression; they become potently immunosuppressive upon stimulation with the supernatant of activated lymphocytes, or with combinations of IFN-γ, with TNF-α, IL-1α or IL-1β. This observation revealed that under certain circumstances, inflammatory cytokines can actually become immunosuppressive. We showed that there is a species variation in the mechanisms of MSC-mediated immunosuppression: immunosuppression by cytokine-primed mouse MSCs is mediated by nitric oxide (NO), whereas immunosuppression by cytokine-primed human MSCs is executed through indoleamine 2, 3-dioxygenase (IDO). Additionally, upon stimulation with the inflammatory cytokines, both mouse and human MSCs secrete several leukocyte chemokines that apparently serve to attract immune cells into the proximity with MSCs, where NO or IDO is predicted to be most active. Therefore, immunosuppression by inflammatory cytokine-stimulated MSCs occurs via the concerted action of chemokines and immune-inhibitory NO or IDO produced by MSCs. Thus, our results provide novel information about the mechanisms of MSC-mediated immunosuppression and for better application of MSCs in treating tissue injuries induced by immune responses.