This paper puts forward a new method to solve the electromagnetic parabolic equation (EMPE) by taking the vertically-layered inhomogeneous characteristics of the atmospheric refractive index into account. First, the Fourier transform and the convo- lution theorem are employed, and the second-order partial differential equation, i.e., the EMPE, in the height space is transformed into first-order constant coefficient differential equations in the frequency space. Then, by use of the lower triangular characteristics of the coefficient matrix, the numerical solutions are designed. Through constructing ana- lytical solutions to the EMPE, the feasibility of the new method is validated. Finally, the numerical solutions to the new method are compared with those of the commonly used split-step Fourier algorithm.
A multilayer flow is a stratified fluid composed of a finite number of layers with densities homogeneous within one layer but different from each other. It is an intermediate system between the single-layer barotropic model and the continuously stratified baroclinic model. Since this system can simulate the baroclinic effect simply, it is widely used to study the large-scale dynamic process in atmosphere and ocean. The present paper is concerned with the linear stability of the multilayer quasi-geostrophic flow, and the associated linear stability criteria are established. Firstly, the nonlinear model is turned into the form of a Hamiltonian system, and a basic flow is defined. But it cannot be an extreme point of the Hamiltonian function since the system is an infinite-dimensional one. Therefore, it is necessary to reconstruct a new Hamiltonian function so that the basic flow becomes an extreme point of it. Secondly, the linearized equations of disturbances in the multilayer quasi-geostrophic flow are derived by introducing infinitesimal disturbances superposed on the basic flows. Finally, the properties of the linearized system are discussed, and the linear stability criteria in the sense of Liapunov are derived under two different conditions with respect to certain norms.