Verticillium wilt(caused by the pathogen Verticillium dahliae) is of high concern for cotton producers and consumers. The major strategy for controlling this disease is the development of resistant cotton(Gossypium spp.) cultivars. We used interspecific chromosome segment introgression lines(CSILs) to identify quantitative trait loci(QTL) associated with resistance to Verticillium wilt in cotton grown in greenhouse and inoculated with three defoliating V. dahliae isolates. A total of 42 QTL, including 23 with resistance-increasing and 19 with resistancedecreasing, influenced host resistance against the three isolates. These QTL were identified and mapped on 18 chromosomes(chromosomes A1, A3, A4, A5, A7, A8, A9, A12, A13, D1, D2,D3, D4, D5, D7, D8, D11, and D12), with LOD values ranging from 3.00 to 9.29. Among the positive QTL with resistance-increasing effect, 21 conferred resistance to only one V. dahliae isolate, suggesting that resistance to V. dahliae conferred by most QTL is pathogen isolate-specific. The At subgenome of cotton had greater effect on resistance to Verticillium wilt than the Dt subgenome. We conclude that pyramiding different resistant QTL could be used to breed cotton cultivars with broad-spectrum resistance to Verticillium wilt.
Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in tbliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agro- bacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant translbnnants per 1 × 10^4 conidia. V. dahliae mutants lacking either VdATG8 or VdATGI2 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild- type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in E dahliae.
Cotton Verticillium wilt is a serious soil-borne disease that leads to significant losses in fiber yield and quality worldwide. Currently, the most effective way to increase Verticillium wilt resistance is to develop new resistant cotton varieties. Lines 5026 and 60182 are two Verticillium wilt-resistant upland cotton accessions. We previously identified a total of 25 quantitative trait loci(QTLs) related to Verticillium wilt resistance from 5026 and 60182 by assembling segregating populations from hybridization with susceptible parents. In the current study, using 13 microsatellite markers flanking QTLs related to Verticillium wilt resistance, we developed 155 cotton inbred lines by pyramiding different QTLs related to Verticillium wilt resistance from a filial generation produced by crossing 5026 and 60182. By examining each allele's effect and performing multiple comparison analysis, we detected four elite QTLs/alleles(q-5/NAU905-2, q-6/NAU2754-2, q-8/NAU3053-1 and q-13/NAU6598-1) significant for Verticillium wilt resistance, pyramiding these elite alleles increased the disease resistance of inbred lines. Furthermore, we selected 34 elite inbred lines, including five lines simultaneously performing elite fiber quality, high yield and resistance to V. dahliae, 14 lines with elite fiber quality and disease resistance, three lines with high yield and disease resistance, and 12 lines with resistance to V. dahliae. No correlation between Verticillium wilt resistance and fiber quality traits/yield and its components was detected in the 155 developed inbred lines. Our results provide candidate markers for disease resistance for use in marker-assisted breeding(MAS), as well as elite germplasms for improving important agronomic traits via modern cotton breeding.
The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.