This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.