Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
Different types of vegetation occupy different geomorphology and water gradient environments in the San- jiang Plain, indicating that the soil moisture dynamics and water balance patterns of the different vegetation communi- ties might differ from each other. In this paper, a lowland system, perpendicular to the Nongjiang River in the Honghe National Nature Reserve (HNNR), was selected as the study area. The area was occupied by the non-wetland plant forest and the typical wetland plant meadow. The Microsoft Windows-based finite element analysis software package for simulating water, heat, and solute transport in variably saturated porous media (HYDRUS), which can quantita- tively simulate water, heat, and/or solute movement in variably-saturated porous media, was used to simulate soil moisture dynamics in the root zone (20-40 cm) of those two plant communities during the growing season in 2005. The simulation results for soil moisture were in a good agreement with measured data, with the coefficient of determi- nation (R2) of 0.44-0.69 and root mean square error (RMSE) ranging between 0.0291 cm3/cm3 and 0.0457 cm3/cm3, and index of agreement (d) being from I).612 to 0.968. During the study period, the volumetric soil moisture content of meadow increased with the depth and its coefficient of variation decreased with the depth (from 20 cm to 40 cm), while under the forest the soil moisture content at different depths varied irregularly. The calculated result of water budget showed that the water budget deficit of the meadow was higher than that of the forest, suggesting that the meadow is more likely to suffer from water stress than the forest. The quantitative simulation by HYDRUS in this study did not take surface runoff and plant growth processes into account. Improved root water uptake and surface runoff models will be needed for higher accuracy in further researches.
LI ShanghuaZHOU DeminLUAN ZhaoqingPAN YunJIAO Cuicui