The approximate transient response of quasi in- tegrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged It6 equa- tions for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averag- ing method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approxi- mate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coeffi- cients. The transient probability densities of displacements and velocities can be derived from that of independent mo- tion integrals. Three examples are given to illustrate the ap- plication of the proposed procedure. It is shown that the re- suits for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simula- tion of the original systems.
A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed. The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method. The partially averaged Ito equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems. The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation. A bilinear controller by using the direct method of Lyapunov is introduced. The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.
The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is in- vestigated by using the stochastic averaging method. The averaged generalized It6 stochastic differential equation and Fokkerlanck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter e2s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.
The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately described by It equations through the stochastic averaging method based on the generalized harmonic function.Then,the associated expression for the largest Lyapunov exponent of the linearized averaged It is derived,and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent be negative.The effects of fractional orders and random excitation intensities on the asymptotic stability with probability one determined by the largest Lyapunov exponent are shown graphically.
The first-passage failure of Duffing oscillator with the delayed feedback control under the combined harmonic and white-noise excitations is investigated. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged It? stochastic differential equations for the system are derived by using the stochastic averaging method. A backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of the first-passage time are established. Finally, the conditional reliability function, the conditional probability density and moments of the first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. The effects of time delay in feedback control force on the conditional reliability function, conditional probability density and moments of the first-passage time are analyzed. The validity of the proposed method is confirmed by digital simulation.
We studied the response of fractional-order van de Pol oscillator to Gaussian white noise excitation in this letter. An equivalent integral-order nonlinear stochastic system is obtained to replace the given system based on the principle of minimum mean-square error. Through stochastic averaging, an averaged Ito equation is deduced. We obtained the Fokker–Planck–Kolmogorov equation connected to the averaged Ito equation and solved it to yield the approximate stationary response of the system. The analytical solution is confirmed by using Monte Carlo simulation.
In this paper,the asymptotic stability with probability one of multi-degree-of-freedom(MDOF)nonlinear oscillators with fractional derivative damping parametrically excited by Gaussian white noises is investigated.A stochastic averaging method and the Khasminskii’s procedure are employed to evaluate the largest Lyapunov exponent,whose sign determines the stability of the system.As an example,two coupled nonlinear oscillators with fractional derivative damping is worked out to demonstrate the proposed procedure and to examine the effect of fractional order on the stochastic stability of system.In particular,the case of factional order more than 1 is studied for the first time.