您的位置: 专家智库 > >

宁波市自然科学基金(2011A610175)

作品数:1 被引量:1H指数:1
发文基金:中国博士后科学基金国家自然科学基金宁波市自然科学基金更多>>
相关领域:环境科学与工程自动化与计算机技术更多>>

文献类型

  • 1篇期刊文章
  • 1篇会议论文

领域

  • 2篇自动化与计算...
  • 1篇环境科学与工...

主题

  • 1篇片段
  • 1篇聚类
  • 1篇聚类算法
  • 1篇UNCERT...
  • 1篇DYNAMI...
  • 1篇ENVIRO...
  • 1篇AWAREN...

机构

  • 1篇宁波工程学院

作者

  • 1篇刘良旭
  • 1篇范剑波
  • 1篇叶思敏

传媒

  • 1篇Journa...

年份

  • 1篇2012
  • 1篇2011
1 条 记 录,以下是 1-2
排序方式:
Key techniques for predicting the uncertain trajectories of moving objects with dynamic environment awareness被引量:1
2011年
Emerging technologies of wireless and mobile communication enable people to accumulate a large volume of time-stamped locations,which appear in the form of a continuous moving object trajectory.How to accurately predict the uncertain mobility of objects becomes an important and challenging problem.Existing algorithms for trajectory prediction in moving objects databases mainly focus on identifying frequent trajectory patterns,and do not take account of the effect of essential dynamic environmental factors.In this study,a general schema for predicting uncertain trajectories of moving objects with dynamic environment awareness is presented,and the key techniques in trajectory prediction arc addressed in detail.In order to accurately predict the trajectories,a trajectory prediction algorithm based on continuous time Bayesian networks(CTBNs) is improved and applied,which takes dynamic environmental factors into full consideration.Experiments conducted on synthetic trajectory data verify the effectiveness of the improved algorithm,which also guarantees the time performance as well.
Shaojie QIAOXian WANGLu'an TANGLiangxu LIUXun GONG
一种基于局部位置无关的轨迹片段聚类算法
随着定位技术在很多领域的应用,越来越多的应用系统服务器中开始存储大量的定位数据,而如何对这些定位数据进行聚类分析日益成为一个研究热点.针对以轨迹片段表示轨迹局部特征存在的问题,引入了以轨迹点表示轨迹局部特征的思想,并在局...
张莎妮刘良旭叶思敏范剑波
文献传递
共1页<1>
聚类工具0