Single-mode, long-wavelength vertical-cavity surface-emitting lasers (VCSELs) in the near- to mid-infrared covering the wavelength range from 1.3 to 2.3 μm are presented. This wide spectral emission range opens applications in gas sensing and optical interconnects. All these lasers are monolithically grown in the InGaAlAs-InP material system utilizing a buried tunnel junction (BTJ) as current aperture. Fabricated with a novel high-speed design with reduced parasitics, bandwidths in excess of 10 GHz at 1.3 and 1.55 μm have been achieved. Therefore, the coarse wavelength division multiplexing (CWDM) wavelength range of 1.3 to 1.6 μm at 10 Gb/s can be accomplished with one technology. Error-free data-transmission at 10 Gb/s over a fiber link of 20 km is demonstrated. One-dimensional arrays have been fabricated with emission wavelengths addressable by current tuning. Micro-electro-mechanical system (MEMS) tunable devices provide an extended tuning range in excess of 50 nm with high spectral purity. All these devices feature continuous-wave (CW) operation with typical single-mode output powers exceeding 1 mW. The operation voltage is around 1 - 1.5 V and power consumption is as low as 10 - 20 mW. Furthermore, we have also developed VCSELs based on GaSb, targeting functionality of tunable diode laser spectroscopy (TDLS) applying a 1.84-μm VCSEL. at the wavelength range from 2.3 to 3.0 μm. The systems is shown by presenting a laser hygrometer
The optimal intensity noise suppression of a Fabry-Perot (FP) laser is experimentally acquired by relatively strong external optical injection locking technology. The maximum suppression is up to 9dB around the relaxation oscillation peak of the free running FP laser. We demonstrate how the injection light power and detuning frequency influence the intensity noise suppression effects. Additionally, the relationship between the optimal suppression range and the stable locking range is experimentally studied:both ranges enlarge as the injection light power increases, but the stable locking range permits larger detuning frequency at identical injection light power.