CoSb3 nanowire arrays, preferred orientation of [510], were fabricated by electrodeposition of Co2+ and Sb3+ into anodic aluminum oxide (AAO) templates. The morphologies, structure, and composition of the as-synthesized sample have been performed using X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and energy-dispersive X-ray spectroscopy (EDS). Based on the previous investigation on CoSb3 nanowire arrays orientated along [420], the formation mechanism for different preferential orientation nanowire arrays was discussed.
A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded zone (DZ) was investigated. Fourier transform infrared absorption spectrometer (FTIR) was used to measure the concentration of interstitial oxygen ([Oi]). Bulk microdefects were observed by optical microscope. The results show that, according to the variation of [Oi], it is found that RTP doesn’t change the processes of oxygen precipitation in fast neutron irradiated Czochralski silicon. Perfect denuded zone, dense oxygen precipitates and defects form in the bulk of irradiated samples. With increasing temperature of RTP, the width of denuded zone decreases. Increasing RTP cooling rate, the density of Bulk microdefects increases. DZ forms in the sample that annealed in nitrogen atmosphere.
The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect, oxygen atom shares a vacancy, it is bonded to two silicon neighbors. Annealed at 200 ℃, divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2), 834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1, 825 cm-1 and 889 cm-1 (VO2), in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO, etc, in high dose neutron irradiated CZ-Si (S2), the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose, the annealing behavior of A-center is changed.